• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 181
  • 32
  • 13
  • 10
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 292
  • 83
  • 50
  • 49
  • 44
  • 39
  • 39
  • 33
  • 32
  • 30
  • 27
  • 24
  • 24
  • 24
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Studies on Matrix Eigenvalue Problems in Terms of Discrete Integrable Systems / 離散可積分系による行列固有値問題の研究

Akaiwa, Kanae 24 September 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第19341号 / 情博第593号 / 新制||情||103(附属図書館) / 32343 / 京都大学大学院情報学研究科数理工学専攻 / (主査)教授 中村 佳正, 教授 矢ケ崎 一幸, 教授 西村 直志 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
122

Studies on Non-autonomous Discrete Hungry Integrable Systems Associated with Some Eigenvalue Problems / 固有値問題に関連する非自励型離散ハングリー可積分系の研究

Shinjo, Masato 25 September 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第20739号 / 情博第653号 / 新制||情||113(附属図書館) / 京都大学大学院情報学研究科数理工学専攻 / (主査)教授 中村 佳正, 教授 山下 信雄, 教授 西村 直志 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
123

Molecular predissociation resonances below an energy level crossing / エネルギー交差下の分子前期解離の共鳴

Ashida, Sohei 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第20880号 / 理博第4332号 / 新制||理||1622(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)教授 堤 誉志雄, 教授 上 正明, 教授 宍倉 光広 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
124

Exploring and extending eigensolvers for Toeplitz(-like) matrices : A study of numerical eigenvalue and eigenvector computations combined with matrix-less methods

Knebel, Martin, Cers, Fredrik, Groth, Oliver January 2022 (has links)
We implement an eigenvalue solving algorithm proposed by Ng and Trench, specialized for Toeplitz(-like) matrices, utilizing root finding in conjunction with an iteratively calculated version of the characteristic polynomial. The solver also yields corresponding eigenvectors as a free bi-product. We combine the algorithm with matrix-less methods in order to yield eigenvector approximations, and examine its behavior both regarding demands for time and computational power. The algorithm is fully parallelizable, and although solving of all eigenvalues to the bi-Laplacian discretization matrix - which we used as a model matrix - is not superior to standard methods, we see promising results when using it as an eigenvector solver, using eigenvector approximations from standard solvers or a matrix-less method. We also note that an advantage of the algorithm we examine is that it can calculate singular, specific eigenvalues (and the corresponding eigenvectors), anywhere in the spectrum, whilst standard solvers often have to calculate all eigenvalues, which could be a useful feature. We conclude that - while the algorithm shows promising results - more experiments are needed, and propose a number of topics which could be studied further, e.g. different matrices (Toeplitz-like, full), and looking at even larger matrices.
125

INCOMPLETE PAIRWISE COMPARISON MATRICES AND OPTIMIZATION TECHNIQUES

Tekile, Hailemariam Abebe 08 May 2023 (has links)
Pairwise comparison matrices (PCMs) play a key role in multi-criteria decision making, especially in the analytic hierarchy process. It could be necessary for an expert to compare alternatives based on various criteria. However, for a variety of reasons, such as lack of time or insufficient knowledge, it may happen that the expert cannot provide judgments on all pairs of alternatives. In this case, an incomplete pairwise comparison matrix is formed. In the first research part, an optimization algorithm is proposed for the optimal completion of an incomplete PCM. It is intended to numerically minimize a constrained eigenvalue problem, in which the objective function is difficult to write explicitly in terms of variables. Numerical simulations are carried out to examine the performance of the algorithm. The simulation results show that the proposed algorithm is capable of solving the minimization of the constrained eigenvalue problem. In the second part, a comparative analysis of eleven completion methods is studied. The similarity of the eleven completion methods is analyzed on the basis of numerical simulations and hierarchical clustering. Numerical simulations are performed for PCMs of different orders considering various numbers of missing comparisons. The results suggest the existence of a cluster of five extremely similar methods, and a method significantly dissimilar from all the others. In the third part, the filling in patterns (arrangements of known comparisons) of incomplete PCMs based on their graph representation are investigated under given conditions: regularity, diameter and number of vertices, but without prior information. Regular and quasi-regular graphs with minimal diameter are proposed. Finally, the simulation results indicate that the proposed graphs indeed provide better weight vectors than alternative graphs with the same number of comparisons. This research problem’s contributions include a list of (quasi-)regular graphs with diameters of 2 and 3, and vertices from 5 up to 24.
126

Dirichlet-to-Neumann maps and Nonlinear eigenvalue problems

Jernström, Tindra, Öhman, Anna January 2023 (has links)
Differential equations arise frequently in modeling of physical systems, often resulting in linear eigenvalue problems. However, when dealing with large physical domains, solving such problems can be computationally expensive. This thesis examines an alternative approach to solving these problems, which involves utilizing absorbing boundary conditions and a Dirichlet-to-Neumann maps to transform the large sparse linear eigenvalue problem into a smaller nonlinear eigenvalue problem (NEP). The NEP is then solved using augmented Newton’s method. The specific equation investigated in this thesis is the two-dimensional Helmholtz equation, defined on the interval (x, y) ∈ [0, 10] × [0, 1], with the absorbing boundary condition introduced at x = 1. The results show a significant reduction in computational time when using this method compared to the original linear problem, making it a valuable tool for solving large linear eigenvalue problems. Another result is that the NEP does not affect the computational error compared to solving the linear problem, which further supports the NEP as an attractive alternative method.
127

CHARACTERIZATION OF EXPOSURE-DEPENDENT EIGENVALUE DRIFT USING MONTE CARLO BASED NUCLEAR FUEL MANAGEMENT

XOUBI, NED January 2005 (has links)
No description available.
128

FORWARD AND BACKWARD EXTENDED PRONY (FBEP) METHOD WITH APPLICATIONS TO POWER SYSTEM SMALL-SIGNAL STABILITY

Zhao, Shuang 08 February 2017 (has links)
No description available.
129

Dynamic Characterization and Active Modification of Viscoelastic Materials

Zhao, Sihong 04 May 2011 (has links)
No description available.
130

A two-stage method for system identification from time series

Nadsady, Kenneth Allan January 1998 (has links)
No description available.

Page generated in 0.0365 seconds