111 |
Design and Implementation of IGBT Based Power Supply for Food TreatmentMoonesan, Mohammad Saleh January 2011 (has links)
Pulsed electric field (PEF) processing has been demonstrated to be an effective non-thermal pasteurization method for food-treatment applications. With this method, high voltage, short-duration pulses are applied to a chamber through which liquid food is passed. If the voltage applied and the corresponding electric field develops a potential higher than a critical trans-membrane potential, the pores expand, and the membrane of the living cell is ruptured. Due to the lower amount of energy consumed during a PEF process, the temperature of the liquid is kept much lower than as opposed to conventional pasteurization. The PEF method thus kills bacteria and other microorganisms while preserving the nutrition and taste of the liquid foods.
Although the parameter responsible for inactivation is the voltage applied, for any given voltage, the conductivity of the liquid defines a current through the liquid that causes the temperature to rise. Therefore, preventing excessive heating of the liquid requires the application of an efficient waveform. According to the literature, the most efficient waveform is a square wave since the entire energy applied would be used for the inactivation process. Although some power supplies are capable of generating such a waveform, the generation of an efficient waveform that satisfies all the requirements for producing a viable product for PEF applications is still a challenging problem.
In this research, a cascadable pulse generator, based on a Marx generator design, was designed and implemented in order to generate a pulsed waveform for the treatment of liquid food. IGBT switches were used to charge capacitors in parallel and to discharge them in series as a means of generating a high voltage at the output. The design was implemented and tested for two stages, generating up to 6 kV and 1.6 kA square pulses with a controllable pulse width from 1 µs to 10 µs. Up to 3 switches were connected in parallel to enhance the current capability of the system. Also investigated are ways to improve the transient time by enhancing the IGBT driver circuit. The effect of design parameters such as pulse width, voltage, and current on the temperature rise in the liquid was also studied. A variety of liquid foods with different conductivities were tested in order to confirm the functionality of the system.
|
112 |
Reducing the electric field sensitivity of a Rydberg state transition by the application of a non-resonant microwave fieldJones, Lucas Alexander 21 August 2012 (has links)
The 87Rb 49s->48s Rydberg state transition was rendered insensitive to electric field fluctuations about a 1V/cm dc electric field. This was accomplished by applying a non-resonant 38.445GHz microwave field to modify the electric dipole moment difference between the two states involved. This effect can be used to preserve the coherence of Rydberg state qubits in the presence of varying electric fields.
|
113 |
圧電セラミックスにおける繰返し荷重および直流電界重畳下での疲労き裂進展挙動白木原, 香織, SHIRAKIHARA, Kaori, 田中, 啓介, TANAKA, Keisuke, 秋庭, 義明, AKINIWA, Yoshiaki, 鈴木, 康悦, SUZUKI, Yasuyoshi, 向井, 寛克, MUKAI, Hirokatsu 06 1900 (has links)
No description available.
|
114 |
Reducing the electric field sensitivity of a Rydberg state transition by the application of a non-resonant microwave fieldJones, Lucas Alexander 21 August 2012 (has links)
The 87Rb 49s->48s Rydberg state transition was rendered insensitive to electric field fluctuations about a 1V/cm dc electric field. This was accomplished by applying a non-resonant 38.445GHz microwave field to modify the electric dipole moment difference between the two states involved. This effect can be used to preserve the coherence of Rydberg state qubits in the presence of varying electric fields.
|
115 |
An Investigation on the Non Thermal Pasteurisation Using Pulsed Electric FieldsAlkhafaji, Sally January 2006 (has links)
Increasing consumer demand for new products with high nutritional qualities has spurred a search for new alternatives to food preservation. Pulsed electric field (PEF) is an emerging technology for non thermal food pasteurisation. Using this technology, enzymes, pathogenic and spoilage microorganisms can be inactivated without affecting the colour, flavour, and nutrients of the food. PEF treatment may be provided by applying pulsed electric field to a food product in a treatment zone between two electrodes at ambient , or slightly above ambient temperature. Exposure of microbial cells to the electric field induces a transmembrane potential in the cell membrane, which results in electroporation (the permeabilization of the membranes of cells and organelles) and/or electrofusion (the connection of two separate membranes into one) of the cells. An innovative pulsed electric field (PEF) unit was designed and constructed in the University of Auckland using modern IGBT technology. The system consists of main equipments, the high voltage pulse generator and the treatment chambers. The main focus of this work was to design an innovative PEF treatment chamber that provide uniform distribution of electric field, minimum increase in liquid temperature, minimum fouling of electrodes and an energy efficient system. Four multi pass treatment chambers were designed consisting of two stainless steel mesh electrodes in each chamber, with the treated fluid flowing through the openings of the mesh electrodes. The two electrodes are electrically isolated from each other by an insulator element designed to form a small orifice where most of the electric field is concentrated. Dielectric breakdown inside the chambers was prevented by removing the electrodes far from the narrow gap. The effect of the chambers different geometries on the PEF process in terms of electric parameters and microbial inactivation were investigated. Electric field intensity in the range of (17-43 kV/cm) was applied with square bipolar pulses of 1.7 µs duration. The effect of PEF treatment on the inactivation of gram-negative Escherichia coli ATCC 25922 suspended in simulated milk ultra-filtrate (SMUF) of 100%, 66.67% and 50% concentration was investigated. Treatments with the same electrical power input but higher electric field strengths provided larger degree of killing. The inactivation rate of E coli was significantly increased with increasing the electric field strength, treatment time and processing temperature. Morphological changes on E coli as a result of PEF treatment were studied under transmission electron microscopy (TEM). Significant morphological changes on E coli after PEF treatment were observed. The TEM studies suggested that the microbial inactivation was a consequence of electroporation and electrofusion mechanisms. Kinetic analysis of microbial inactivation due to PEF and thermal treatment of E coli suspended in SUMF were also studied. Comparison between measured (experimental) and predicted (theoretical) variation of E coli concentration with time following the PEF treatment was discussed, taking into consideration the recirculation mode of the PEF treatment. The treated liquid was circulated more than once through the treatment chamber to provide higher microbial inactivation. Arrhenius constants and activation energies of E coli inactivation using combined PEF and thermal treatment were calculated and generalized correlation for the inactivation rate constant as a function of electric field intensity and treatment temperature was developed. / Fonterra Research Institute (NZ) and the Foundation for Research Science and Technology (NZ)
|
116 |
An Investigation on the Non Thermal Pasteurisation Using Pulsed Electric FieldsAlkhafaji, Sally January 2006 (has links)
Increasing consumer demand for new products with high nutritional qualities has spurred a search for new alternatives to food preservation. Pulsed electric field (PEF) is an emerging technology for non thermal food pasteurisation. Using this technology, enzymes, pathogenic and spoilage microorganisms can be inactivated without affecting the colour, flavour, and nutrients of the food. PEF treatment may be provided by applying pulsed electric field to a food product in a treatment zone between two electrodes at ambient , or slightly above ambient temperature. Exposure of microbial cells to the electric field induces a transmembrane potential in the cell membrane, which results in electroporation (the permeabilization of the membranes of cells and organelles) and/or electrofusion (the connection of two separate membranes into one) of the cells. An innovative pulsed electric field (PEF) unit was designed and constructed in the University of Auckland using modern IGBT technology. The system consists of main equipments, the high voltage pulse generator and the treatment chambers. The main focus of this work was to design an innovative PEF treatment chamber that provide uniform distribution of electric field, minimum increase in liquid temperature, minimum fouling of electrodes and an energy efficient system. Four multi pass treatment chambers were designed consisting of two stainless steel mesh electrodes in each chamber, with the treated fluid flowing through the openings of the mesh electrodes. The two electrodes are electrically isolated from each other by an insulator element designed to form a small orifice where most of the electric field is concentrated. Dielectric breakdown inside the chambers was prevented by removing the electrodes far from the narrow gap. The effect of the chambers different geometries on the PEF process in terms of electric parameters and microbial inactivation were investigated. Electric field intensity in the range of (17-43 kV/cm) was applied with square bipolar pulses of 1.7 µs duration. The effect of PEF treatment on the inactivation of gram-negative Escherichia coli ATCC 25922 suspended in simulated milk ultra-filtrate (SMUF) of 100%, 66.67% and 50% concentration was investigated. Treatments with the same electrical power input but higher electric field strengths provided larger degree of killing. The inactivation rate of E coli was significantly increased with increasing the electric field strength, treatment time and processing temperature. Morphological changes on E coli as a result of PEF treatment were studied under transmission electron microscopy (TEM). Significant morphological changes on E coli after PEF treatment were observed. The TEM studies suggested that the microbial inactivation was a consequence of electroporation and electrofusion mechanisms. Kinetic analysis of microbial inactivation due to PEF and thermal treatment of E coli suspended in SUMF were also studied. Comparison between measured (experimental) and predicted (theoretical) variation of E coli concentration with time following the PEF treatment was discussed, taking into consideration the recirculation mode of the PEF treatment. The treated liquid was circulated more than once through the treatment chamber to provide higher microbial inactivation. Arrhenius constants and activation energies of E coli inactivation using combined PEF and thermal treatment were calculated and generalized correlation for the inactivation rate constant as a function of electric field intensity and treatment temperature was developed. / Fonterra Research Institute (NZ) and the Foundation for Research Science and Technology (NZ)
|
117 |
An Investigation on the Non Thermal Pasteurisation Using Pulsed Electric FieldsAlkhafaji, Sally January 2006 (has links)
Increasing consumer demand for new products with high nutritional qualities has spurred a search for new alternatives to food preservation. Pulsed electric field (PEF) is an emerging technology for non thermal food pasteurisation. Using this technology, enzymes, pathogenic and spoilage microorganisms can be inactivated without affecting the colour, flavour, and nutrients of the food. PEF treatment may be provided by applying pulsed electric field to a food product in a treatment zone between two electrodes at ambient , or slightly above ambient temperature. Exposure of microbial cells to the electric field induces a transmembrane potential in the cell membrane, which results in electroporation (the permeabilization of the membranes of cells and organelles) and/or electrofusion (the connection of two separate membranes into one) of the cells. An innovative pulsed electric field (PEF) unit was designed and constructed in the University of Auckland using modern IGBT technology. The system consists of main equipments, the high voltage pulse generator and the treatment chambers. The main focus of this work was to design an innovative PEF treatment chamber that provide uniform distribution of electric field, minimum increase in liquid temperature, minimum fouling of electrodes and an energy efficient system. Four multi pass treatment chambers were designed consisting of two stainless steel mesh electrodes in each chamber, with the treated fluid flowing through the openings of the mesh electrodes. The two electrodes are electrically isolated from each other by an insulator element designed to form a small orifice where most of the electric field is concentrated. Dielectric breakdown inside the chambers was prevented by removing the electrodes far from the narrow gap. The effect of the chambers different geometries on the PEF process in terms of electric parameters and microbial inactivation were investigated. Electric field intensity in the range of (17-43 kV/cm) was applied with square bipolar pulses of 1.7 µs duration. The effect of PEF treatment on the inactivation of gram-negative Escherichia coli ATCC 25922 suspended in simulated milk ultra-filtrate (SMUF) of 100%, 66.67% and 50% concentration was investigated. Treatments with the same electrical power input but higher electric field strengths provided larger degree of killing. The inactivation rate of E coli was significantly increased with increasing the electric field strength, treatment time and processing temperature. Morphological changes on E coli as a result of PEF treatment were studied under transmission electron microscopy (TEM). Significant morphological changes on E coli after PEF treatment were observed. The TEM studies suggested that the microbial inactivation was a consequence of electroporation and electrofusion mechanisms. Kinetic analysis of microbial inactivation due to PEF and thermal treatment of E coli suspended in SUMF were also studied. Comparison between measured (experimental) and predicted (theoretical) variation of E coli concentration with time following the PEF treatment was discussed, taking into consideration the recirculation mode of the PEF treatment. The treated liquid was circulated more than once through the treatment chamber to provide higher microbial inactivation. Arrhenius constants and activation energies of E coli inactivation using combined PEF and thermal treatment were calculated and generalized correlation for the inactivation rate constant as a function of electric field intensity and treatment temperature was developed. / Fonterra Research Institute (NZ) and the Foundation for Research Science and Technology (NZ)
|
118 |
An Investigation on the Non Thermal Pasteurisation Using Pulsed Electric FieldsAlkhafaji, Sally January 2006 (has links)
Increasing consumer demand for new products with high nutritional qualities has spurred a search for new alternatives to food preservation. Pulsed electric field (PEF) is an emerging technology for non thermal food pasteurisation. Using this technology, enzymes, pathogenic and spoilage microorganisms can be inactivated without affecting the colour, flavour, and nutrients of the food. PEF treatment may be provided by applying pulsed electric field to a food product in a treatment zone between two electrodes at ambient , or slightly above ambient temperature. Exposure of microbial cells to the electric field induces a transmembrane potential in the cell membrane, which results in electroporation (the permeabilization of the membranes of cells and organelles) and/or electrofusion (the connection of two separate membranes into one) of the cells. An innovative pulsed electric field (PEF) unit was designed and constructed in the University of Auckland using modern IGBT technology. The system consists of main equipments, the high voltage pulse generator and the treatment chambers. The main focus of this work was to design an innovative PEF treatment chamber that provide uniform distribution of electric field, minimum increase in liquid temperature, minimum fouling of electrodes and an energy efficient system. Four multi pass treatment chambers were designed consisting of two stainless steel mesh electrodes in each chamber, with the treated fluid flowing through the openings of the mesh electrodes. The two electrodes are electrically isolated from each other by an insulator element designed to form a small orifice where most of the electric field is concentrated. Dielectric breakdown inside the chambers was prevented by removing the electrodes far from the narrow gap. The effect of the chambers different geometries on the PEF process in terms of electric parameters and microbial inactivation were investigated. Electric field intensity in the range of (17-43 kV/cm) was applied with square bipolar pulses of 1.7 µs duration. The effect of PEF treatment on the inactivation of gram-negative Escherichia coli ATCC 25922 suspended in simulated milk ultra-filtrate (SMUF) of 100%, 66.67% and 50% concentration was investigated. Treatments with the same electrical power input but higher electric field strengths provided larger degree of killing. The inactivation rate of E coli was significantly increased with increasing the electric field strength, treatment time and processing temperature. Morphological changes on E coli as a result of PEF treatment were studied under transmission electron microscopy (TEM). Significant morphological changes on E coli after PEF treatment were observed. The TEM studies suggested that the microbial inactivation was a consequence of electroporation and electrofusion mechanisms. Kinetic analysis of microbial inactivation due to PEF and thermal treatment of E coli suspended in SUMF were also studied. Comparison between measured (experimental) and predicted (theoretical) variation of E coli concentration with time following the PEF treatment was discussed, taking into consideration the recirculation mode of the PEF treatment. The treated liquid was circulated more than once through the treatment chamber to provide higher microbial inactivation. Arrhenius constants and activation energies of E coli inactivation using combined PEF and thermal treatment were calculated and generalized correlation for the inactivation rate constant as a function of electric field intensity and treatment temperature was developed. / Fonterra Research Institute (NZ) and the Foundation for Research Science and Technology (NZ)
|
119 |
Observação de oscilações de 3-4 dias na mesosfera-ionosfera equatorial.SILVA, Leide Pricila da. 17 October 2018 (has links)
Submitted by Emanuel Varela Cardoso (emanuel.varela@ufcg.edu.br) on 2018-10-17T19:57:09Z
No. of bitstreams: 1
LEIDE PRICILA DA SILVA – DISSERTAÇÃO (PPGFísica) 2015.pdf: 15628100 bytes, checksum: 6c279dc226419936cd83d14dd259bcab (MD5) / Made available in DSpace on 2018-10-17T19:57:09Z (GMT). No. of bitstreams: 1
LEIDE PRICILA DA SILVA – DISSERTAÇÃO (PPGFísica) 2015.pdf: 15628100 bytes, checksum: 6c279dc226419936cd83d14dd259bcab (MD5)
Previous issue date: 2015-08-07 / Capes / Foi investigado o acoplamento vertical em baixas latitudes no sistema atmosfera ionosfera na região MLT equatorial impulsionado pela onda de 3-4 dias. Neste trabalho, se identifi cou eventos da onda 3-4 dias durante o per odo de janeiro a dezembro de 2005 nos ventos neutros obtidos por medições de radar localizados em São João do Cariri-PB, Brasil. A variação de 3-4 dias nas correntes elétricas ionosféricas na região E registrado por perturbações no campo geomagnético, foi estudada através de 4 magnetômetros localizados na região equatorial. Os resultados mostraram que as oscilações ocorridas nos ventos zonais em fevereiro-março, maio-junho, agosto e outubro-novembro, são compatíveis com a propagação de ondas ultra-rápido Kelvin. A estrutura de fase vertical foi descendente, compatível com a energia da onda ascendente, e comprimentos de onda verticais de cerca de 45 km foram encontrados nos primeiro, segundo e quarto eventos, o terceiro evento apresenta comprimento de onda vertical de 62 km. Os resultados mostraram eventos quase simultâneos da onda de 3-4 dias no campo geomagnético e nos ventos MLT, cuja propagação é para leste, que pode ser interpretado como devido à onda ultra-rápida de Kelvin, exceto para o terceiro acontecimento que mostrou propagação para oeste. O parâmetro que parece ser afetado é o dínamo campo elétrico. / Vertical coupling in the low latitude atmosphere-ionosphere system driven by the 3-4 day
wave in the equatorial MLT region was investigated. In this work a 3-4 day wave event
during the period from January to December of 2005 identi ed in the neutral winds by
radar measurements located at São João do Cariri-PB, Brazil. The 3-4 day variation in
the ionospheric electric currents in the E region registered by perturbations in the geomagnetic eld, was detected in the data from 4 magnetometer located in the equatorial
region. The results showed that only the oscillations that occurred in the zonal winds
in February-March, May-June, August, and October-November, are compatible with the
ultra-fast Kelvin wave propagation. The vertical phase structure was descendent, compatible with ascending wave energy, and vertical wavelengths of about 45 km were found for in the rst, second and fourth events, the third event 62 km. The results showed
quasi-simultaneous 3-4 day oscillation in the geomagnetic eld and in the MLT winds, in
which the of propagation is eastward, it can be interpreted as due to ultra-fast Kelvin
wave, except for the third event that showed westward propagation. The parameter that
appears to be a a ected is the dynamo electric eld.
|
120 |
Partial discharge and streamer characteristics of transformer liquids under AC stressLiu, Zhao January 2017 (has links)
Pre-breakdown phenomena in transformer liquids have been extensively investigated. The published work can be broadly categorised into streamer and partial discharge (PD) studies, with the former focusing on physical nature and the latter being more relevant to industrial applications. Mineral oil, as the dominant candidate, has been used in power transformers for over a century. In the past decade, there has been an increasing interest in filling power transformers with alternative liquids, e.g. esters and gas-to-liquids (GTL) based oils. This work aims to correlate the PD and streamer characteristics of three transformer liquids under AC stress. The liquids include a conventional mineral oil (Gemini X), a GTL oil (Diala S4 ZX-I) and a synthetic ester (MIDEL 7131). A circuit arrangement in compliance with the IEC 60270 was used, which allowed PD measurements, wide-band current measurements and streamer shadowgraphs to be obtained simultaneously. To simulate the quasi-uniform electric fields in transformers, a plane-to-plane electrode system incorporating an adjustable needle protrusion (PNP) was employed. A needle-to-plane electrode system (NP), which is widely used in the field, was also employed to provide reference results. Based on the PD measurement results, the PD inception fields (PDIFs) of the three liquids were found to be independent of electrode geometry for the investigated tip radius. The PDIF of the synthetic ester is about 13% lower than that of the mineral oil or the GTL oil. Compared with the PD magnitude, the pulse repetition rate is more sensitive to liquid type. At the same voltage under both the NP and PNP configurations, the synthetic ester has the highest pulse repetition rate, followed by the GTL oil, and then the mineral oil. In divergent electric fields (provided by the NP electrode system), it was found that the streamers in the three liquids have a similar stopping length at the same voltage, even though the apparent charge readings are not the same. The correlations between PD and streamer characteristics indicated that the synthetic ester has the highest branching tendency, and has therefore the smallest stopping length per unit of apparent charge among the three liquids. In quasi-uniform electric fields (provided by the PNP electrode system), the streamer branching tendencies of the three liquids were largely suppressed. The change from a propagation-induced breakdown in divergent fields to an initiation-induced breakdown in quasi-uniform fields was explained. The correlations between PD and streamer characteristics revealed that the same apparent charge can indicate different levels of streamer development in the insulation, depending on the uniformity of the electric field. Overall, interpreting PD measurement results needs to take the electric field uniformity (PD location) as well as liquid type into consideration.
|
Page generated in 0.0418 seconds