61 |
Ultrafast acoustic strain generation and effects in semiconductor nanostructuresYoung, Eric Sze Kit January 2014 (has links)
The nature of ultrafast acoustic strain generation and effects in III-V semiconductor-based nanostructures is explored in this thesis via experimental observations that are supported by theoretical analysis. Specifically, coherent phonon generation processes in bulk gallium arsenide (GaAs) are investigated through remote hypersonic detection using a double quantum well-embedded p-i-n diode, after which strain-induced effects in a double barrier quantum well resonant tunnelling diode are examined. Finally, preliminary studies on acoustic modulation of a double barrier quantum dot resonant tunnelling diode are also considered, with recommendations for future experimentation. It was experimentally observed that the transduction of strain in bulk GaAs produces an initial acoustic wavepacket that is strongly asymmetric with a heavily damped leading edge. This was determined to be due to photogeneration of a supersonically expanding electron-hole plasma near the irradiated GaAs surface. Coupled with its propagation from the free surface, the plasma generates stress and therefore strain in the system that is caused by a combination of the deformation potential and thermoelasticity; the former and latter are shown to be dominant for low and high optical excitation densities, respectively. These acoustic waves cannot escape the plasma until it has decelerated to subsonic velocities, which is achieved in a finite time, thus resulting in the observed asymmetry and damped leading edge. This finite acoustic escape time was reduced at high optical excitation densities due to plasma expansion limitation by increased non-radiative Auger recombination of electron-hole pairs. This conclusion is substantiated by analytical expressions derived from the inhomogeneous wave equation, and analysis of the spatially- and temporally-expanding plasma density based on the deformation potential mechanism only. Numerical simulations based on these expressions are fitted to the experimental data, and the thermoelasticity contribution at high excitation densities is deduced from a non-linear deviation of the electron-hole recombination rate and a change in the duration of the leading edge. This contribution expressed a square-law behaviour in the former parameter, which is attributed to non-radiative Auger processes. Strain-induced effects on a double barrier quantum well resonant tunnelling diode resulted in the detection of current modulation on a picosecond timescale only when the device was biased within its resonance region, with the largest modulations at the resonance threshold and peak biases. Through analysis of the device structure and stationary current-voltage characteristics, it is demonstrated that the observed current changes are due to variations of the resonant tunnelling rate caused by acoustic modulation of the confined ground state energies in the diode itself. Numerical analysis of the tunnelling rates provided excellent agreement with the experimental data, particularly when comparing charge transfer rates, where the limited temporal response of the experimental device could be ignored. Furthermore, the charge transferred at the resonance threshold and peak has a set polarity regardless of optical excitation density, and therefore the device possesses “rectifying” behaviour. As such, it has been demonstrated that, by exploiting this acoustoelectronic pumping effect, control of picosecond charge transfer in a resonant tunnelling diode or its application as a hypersonic detector are possible. In closing, the mechanisms for strain generation in bulk GaAs and the utilisation of the acoustoelectronic pumping effect in a double barrier quantum well resonant tunnelling diode are both exhibited in this work, and provide promising evidence and novel hypersonic detection methods for future research into ultrafast acoustic effects in semiconductor nanostructures.
|
62 |
An economic evaluation of a wind power electricity generating farm in South AfricaMenzies, Greig Hamilton 12 1900 (has links)
Thesis (MComm (Economics)--Nelson Mandela Metropolitan University, 2011. / ENGLISH ABSTRACT: Renewable energy technology has received much attention over recent years. The depletion of known fossil fuel reserves and the volatility of international fuel prices require that society looks beyond the current coal-dominated electricity generation methods. Wind energy is an internationally well-established technology with large markets in major countries around the world, such as the USA and Germany. South Africa has the potential to generate large amounts of electricity from the wind because of the strength of the country’s wind resource. The long coast line and open areas are ideal for the exploitation of wind energy. / Sponsored by the Centre for Renewable and Sustainable Energy Studies
|
63 |
Radiofrequency coils for ultra-high field body MRIFarhat, Sedig January 2013 (has links)
In this thesis, the probes were modelled and constructed at the SPMMRC. All measurements were performed on a 7T Philips scanner. The coils have been successfully evaluated. The dipole, loops, strip line and wrist probes for imaging the pelvis, knee and wrist were tested for clinical use at 7T. Two elements wrist coil can pick up signals from the whole region of interest. The advantage is more uniformity of field of view and better sensitivity. The in vivo MRI images acquired in the wrist showed the two elements provided the good quality images for the human wrist. The second study is microstrip line probe. The current flows over the flat-strip were computed, it showed that a significant increase of current close to the edges. This result agrees with theory. We did not use the strip line coil to image a human body, because the coil generated a high SAR/B1 +2 level in the region of interest. The third study was of a coil of two square loops. One way of achieving decoupling is to use the overlapping technique to decouple the coils in the simulation. It produced high signal-to-noise ratio and provides a large field of view. Finally, the dipole has been developed for in vivo MRI applications. We presented a novel model for determining the length of the PECs required for tuning the dipole at 298 MHz. The efficiency, field of view and homogeneity were improved by adding the flat strip, two strips and array strips dipole. The SAR/B1 +2 generated by the dipoles was much less than produced by the loop coil and strip line coil in the pelvis. The dipoles showed the desired improvement in SNR and homogenous coverage. Coverage goes much further into the pelvis and knee as well.
|
64 |
An analysis of Latin America’s electricity market restructuring efforts : the role of energy regulators, performance, and competitionBaca Bañuelos, Miguel Alejandro 21 September 2010 (has links)
This thesis reviews restructuring efforts of the electricity market in Latin America. The work first examines the drivers that have encouraged Latin American countries to restructure their power markets, going from government-held monopolies to fully privatized systems. Then a general conceptual theory is presented to describe the main differences between restructuring and privatization, and antitrust theory. Next, five countries are selected due to their leadership role in electric reforms in the region as well as their economic weight. Then a complete description of their power generation and electricity consumption is described as well as their experiences undergone before and after electricity restructuring. A summary section is presented by benchmarking the five countries and identifying the common issues faced that will help others plan better electric systems. Then, an analysis of their internal market competition is presented, analyzing the impact of electricity costs and rates. Finally, the last portion of this thesis concludes by exploring future trends in market integration programs as well as the challenges for sustainable economic growth, environmental impacts, and cooperation. / text
|
65 |
Magnetotransport and magnetocrystalline anisotropy studies of gallium manganese arsenide thin filmsKing, Christopher Stuart January 2008 (has links)
The ferromagnetic semiconductor gallium manganese arsenide is an important test-bed material for spintronics applications. Whilst a Curie temperature anywhere close to room temperature has yet to be demonstrated, the excellent micromagnetic properties, simple band structure and unusual combination of having both low moment densities and high spin-orbit coupling make this an interesting material to study from both theoretical and experimental perspectives. This thesis reports some experimental studies into the magnetic and magnetoresistive anisotropies in gallium manganese arsenide. In the first main chapter a study of the Anisotropic Magnetoresistance in thin (Ga,Mn)As films is reported, based on transport measurements of micro-scale devices, contributing to the first systematic study in this material. The Anisotropic Magnetoresistance comprises crystalline and non-crystalline components; this study shows that a uniaxial crystalline component can dominate over the whole range of temperatures from 2K up to the Curie temperature, the first time this has been seen in any material system to our knowledge. The following chapter shows that the magnetic anisotropy of gallium manganese arsenide thin films can be engineered by lithographically patterning the material into structures on length scales of a micron or less. Using electron beam lithography to define the structures and SQUID magnetometery to study the resulting magnetic configuration, it is shown that the magnetic anisotropy can be greatly modified, even resulting in a switching of the easy- and hard-axis directions. Finally a new technique based on Anisotropic Magnetoresistance measurements is presented to locate the crossover of competing magnetic anisotropy coefficients in the temperature domain. Conventionally performed by SQUID magnetometry, this new technique is cheaper and simpler whilst qualitatively reproducing the main features of the SQUID measurements.
|
66 |
Tunneling injection and recombination of carriers in self-assembled quantum dotsChaggar, Amrik Richard January 2009 (has links)
This thesis describes an experimental investigation of the resonant injection of carriers into self-assembled indium arsenide (InAs) quantum dots incorporated in the intrinsic region of gallium arsenide (GaAs) p-i-n resonant tunneling diodes, and of the resulting electroluminescence spectrum associated with carrier recombination in the quantum dots, wetting layer and GaAs matrix. A series of devices of different designs have been measured and it is shown that bipolar resonant injection, i.e. resonant injection of both electrons andholes, into the zero-dimensional states provided by the InAs quantum dots is possible. It is shown that bias-tunable tunneling of carriers into the dots provides a means of controlling injection and light emission from a small number of individual dots within a large ensemble. Magnetotunneling spectroscopy is used to investigate the possibility that fluctuations in the potential profile of the GaAs emitter layer play a significant role in the carrier dynamics of such devices. We also show that the extent of carrier energy relaxation prior to recombination can be controlled by tailoring the morphology of the quantum dot layer. Additionally, a study into the phenomenon of low-temperature up-conversion electroluminescence (UCEL) is presented. Injection of carriers into the quantum dot states at an applied bias well below the GaAs flat-band condition results in near-band-edge GaAs electroluminescence, i.e., emission of photons with energies much larger than that supplied by the applied bias and the thermal energy. The origin of this UCEL is discussed and is attributed to carrier excitation resulting from (non-radiative) Auger recombination of electron-hole pairs in the quantum dot ground states.
|
67 |
Electromagnetic wave chaos in photonic crystalsHenning, Andrew John January 2009 (has links)
Similarities in the form of the Schrodinger equation that governs the behaviour of electronic wavefunctions, and Maxwell’s equations which govern the behaviour of electromagnetic waves, allow ideas that originated in solid state physics to be easily applied to electromagnetic waves in photonic structures. While electrons moving through a semiconductor experience a periodic variation in charge, in a photonic crystal electromagnetic waves experience a periodic variation in refractive index. This leads to ideas such as bandstructure being applicable to the one and two dimensional photonic crystals used in this work. The following work will contain theoretical and experimental studies of the transmission through, and electric fields within, one dimensional photonic crystals. A slow variation in the structure of these crystals will lead to the bandstructure shifting, with an photonic analogy of electronic Bloch oscillations and Wannier-Stark ladders being seen in these structures. The two dimensional photonic crystals will be shown, through Hamiltonian ray tracing, to support both stable and chaotic ray paths. Examination of the phase space reveals the existence of ‘Dynamical Barriers’, regions in phase space supporting stable ray trajectories that divide separate regions in which the ray trajectories are chaotic. Various manners in which the bandstructure may be varied will be presented, along with a proposed switch that may be made using these structures. While the ray tracing will be carried out in photonic crystals in the limit of infinitesimally thin dielectric sheets, the model will then be developed to show the bandstructure of a photonic crystal made from finite width dielectric sheets, with examples of dispersion surfaces for these structures being presented.
|
68 |
Transport and optical effects in self-assembled quantum dot devicesBrown, Adam L. January 2009 (has links)
This thesis describes a theoretical and numerical study of quantum transport and optical effects through an array of self-assembled InAs quantum dots grown in the intrinsic region of a GaAs p-i-n junction. We present a numerical simulation of this system and compare the generated transport and elecroluminescence results to recent experimental data. The simulation first calculates the quantum tunnelling, excitonic recombination, and relaxation rates within the dots, and then uses a stochastic model to simulate carriers entering and leaving the array. We highlight a number of features within the simulation, which shed light on similar features seen in experimental data. In particular, we demonstrate the importance of including the effects of the Coulomb interactions between the carriers, as this is shown be necessary for the simulated and experimental results to match closely. We also investigate a model of Auger processes which is shown to produce up-conversion luminescence, and study the effect of varying the location of the array within the intrinsic region. Additionally we present a master equation approach, which we use to describe a correlated tunnelling regime, in which the Coulomb interaction between an electron and a hole forces them to tunnel alternately onto a single dot before recombination. We produce current and photon noise predictions for both tunnelling and recombination limited regimes. We also investigate this phenomena for a pair of interacting dots, and find a number of two dot configurations which are able to produce current and electroluminescence. We present current and photo-current rate predictions for each case, and associated current and photon noise results.
|
69 |
Optimal time-related charging in competitive markets with particular reference to electricityDudley, Paul January 1995 (has links)
No description available.
|
70 |
Long term load forecasting for the Central Region of Saudi ArabiaAl-Aoudah, Ahmed A. January 2002 (has links)
No description available.
|
Page generated in 0.017 seconds