• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 293
  • 91
  • 32
  • 21
  • 19
  • 8
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • Tagged with
  • 594
  • 116
  • 93
  • 83
  • 80
  • 79
  • 71
  • 70
  • 66
  • 52
  • 51
  • 48
  • 45
  • 45
  • 43
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
541

Electrochemical Investigations Of Sub-Micron Size And Porous Positive Electrode Materials Of Li-Ion Batteries

Sinha, Nupur Nikkan 05 1900 (has links) (PDF)
A Comprehensive review of literature on electrode materials for lithium-ion batteries is provided in Chapter 1 of the thesis. Chapter 2 deals with the studies on porous, sub-micrometer size LiNi1/3Co1/3O2 as a positive electrode material for Li-ion cells synthesized by inverse microemulsion route and polymer template route. The electromechanical characterization studies show that carbon-coated LiNi1/3Co1/3O2 samples exhibit improved rate capability and cycling performance. Furthermore, it is anticipated that porous LiNi1/3Co1/3O2 could be useful for high rates of charge-discharge cycling. Synthesis of sub-micrometer size, porous particles of LiNi1/3Co1/3O2 using a tri-block copolymer as a soft template is carried out. LiNi1/3Co1/3O2 sample prepared at 900ºC exhibits a high rate capability and stable capacity retention of cycling. The electrochemical performance of LiNi1/3Co1/3O2 prepared in the absence of the polymer template is inferior to that of the sample prepared in the presence of the polymer template. Chapter 4 involves the synthesis of sub-micrometer size particles of LiMn2O4 in quaternary microemulsion medium. The electrochemical characterization studies provide discharge capacity values of about 100 mAh g-1 at C/5 rate and there is moderate decrease in capacity by increasing the rate of charge-discharge cycling. Studies also include charge-discharge cycling as well as ac impedance studies in temperature range from -10 to 40º C. Chapter 5 reports the synthesis of nano-plate LiFePO4 by polyol route starting from two reactants, namely, FePO42H2O and LiOH.2H2O. The electrodes fabricated out of nano-plate of LiFePO4 exhibit a high electrochemical activity. A stable capacity of about 155 mAh g-1 is measured at 0.2 C over 50 charge-discharge cycles. Mesoporous LiFePO4/C composite with two sizes of pores is prepared for the first time via solution-based polymer template technique. The precursor of LiFePO4/C composite is heated at different temperatures in the range from 600 to 800ºC to study the effect of crystalllinity, porosity and morphology on the electrochemical performance. The compound obtained at 700ºC exhibits a high rate capability and stable capacity retention on cycling with pore size distribution around 4 and 46nm. In Chapter 6, the electrochemical characterization of LiMn2O4 in an aqueous solution of 5 M LiNO3 is reported. A typical cell employing LiMn2O4 as the positive electrode and V2O5 as the negative electrode was assembled and the characterized by charge-discharge cycling in 5 M LiNO3 aqueous electrolyte. Furthermore, it is shown that Li+-ion in LiMn2O4 can be replaced by other divalent ions resulting in the formation of MMn2O4 (M = Ca, Mg, Ba and Sr) in aqueous M(NO3)2 electrolytes by subjecting LiMn2O4 electrodes to cyclic voltametry. Cyclic voltammetry and chronopotentiometry studies suggest that MMn2O4 can undergo reversible redox reaction by intercalation/deintercalation of M2+-ions in aqueous M(NO3)2 electrolytes.
542

Influence Of Nanostructuring On Electrochemical Performance Of Titania-Based Electrodes And Liquid Electrolytes For Rechargeable Lithium-Ion Batteries

Das, Shyamal Kumar 10 1900 (has links) (PDF)
The present thesis deals with the beneficial influence of nanostructuring on electrochemical performance of certain promising electrode and electrolyte materials for lithium-ion batteries (LIBs). Electrochemical performances of chosen electrodes and electrolytes have been presented in a systematic and detailed manner via studies related to both transport and lithium storage. Titanium dioxide (TiO2) or titania, a promising non-carbonaceous anode material for LIBs was chosen for the study. As part of the study, variety of nanostructured titania were synthesized. In general, all materials exhibited high lithium storage ( theoretical value for lithium storage in titania) and some of them showed exemplary rate capability, typically desired for modern lithium-ion batteries. Studies related to performance of these materials and mechanistics of lithium storage and kinetics are presented in Chapters 2-5. “Soggy sand” electrolyte, a promising soft matter electrolyte for LIBs was studied on the electrolyte side. Ion transport, mechanical strength and electrochemical properties of “soggy sand” electrolytes synthesized via dispersion of various surface chemically functionalized silica particles dispersed in model as well as LIB relevant electrolytes were studied in this thesis. Extensive physico-chemical and battery performance studies of “soggy sand” electrolytes are discussed in Chapters 6-8. A brief discussion of the contents and highlights of the individual chapters are described below: Chapter 1 briefly discusses the importance of electrochemical power sources as a viable green alternative to the combustion engine. Various facets of rechargeable LIBs, one of the most important electrochemical storage devices, are presented following the general discussion on electrochemical power devices. The importance of nanostructuring of electrodes with special emphasis on anodes for high lithium storage capacities and rate capabilities are also discussed in the opening chapter. The various advantages and disadvantages of the most commonly used electrolytes in LIB i.e. the liquid electrolytes are also discussed in Chapter 1. Suggestions for improvement of the physico-chemical properties of liquid electrolytes especially via nanostructuring (demonstrated via dispersions of fine oxide particles in liquid electrolytes in Chapters 6-8) using the concept of Heterogeneous doping are discussed in detail. A brief description on the importance of rheology for comprehension of soft matter microstructure is also provided in this chapter. Chapter 2 discusses composite of anatase titania (TiO2) nanospheres and carbon grown and self-assembled into micron-sized mesoporous spheres via a solvothermal synthesis route as prospective anode for rechargeable lithium-ion battery. The morphology and carbon content and hence the electrochemical performance are observed to be significantly influenced by the synthesis parameters. Synthesis conditions resulting in a mesoporous arrangement of an optimized amount of carbon and TiO2 exhibited the best lithium battery performance. The first discharge cycle capacity of carbon-titania mesoporous spheres (solvothermal reaction at 150 oC at 6 h, calcination at 500 oC under air, BET surface area 80 m2g-1) was 334 mAhg-1 (approximately 1 Li) at current rate of 66 mAg-1. High storage capacity and good cyclability is attributed to the nanostructuring (i.e. mesoporosity) of TiO2 as well as due to formation of a percolation network of carbon around the TiO2 nanoparticles. The micron-sized mesoporous spheres of carbon-titania composite nanoparticles also show good rate cyclability in the range (0.066-6.67) Ag-1. The electrochemical performance of the mesoporous carbon-TiO2 spheres has been compared with nonporous TiO2 spheres, normal mesoporous TiO2 and bulk TiO2. Implications of nanostructuring and conductive carbon interface on lithium insertion/removal capacity and insertion kinetics in nanoparticles of anatase polymorph of titania is discussed in Chapter 3. Sol-gel synthesized nanoparticles of titania (particle size ~ 6 nm) were hydrothermally coated ex situ with a thin layer of amorphous carbon (layer thickness: 2-5 nm) and calcined at a temperature much higher than the sol-gel synthesis temperature. The carbon-titania composite particles (resulting size  10 nm) displayed immensely superior cyclability and rate capability (higher current rates  4 Ag-1) compared to unmodified calcined anatase titania. The conductive carbon interface around titania nanocrystals enhances the electronic conductivity and inhibits crystallite growth during electrochemical insertion/removal thus preventing detrimental kinetic effects observed in case of un-modified anatase titania. The carbon coating of the nanoparticles also stabilized the titania crystallographic structure via reduction in the accessibility of lithium ions to the trapping sites. This resulted in decrease in the irreversible capacity observed in case of nanoparticles without any carbon coating. Chapter 4 discusses the morphology and electrochemical performance of mixed crystallographic phase titania nanotubes and nanosheets for prospective application as anode in rechargeable lithium-ion batteries. Hydrothermally grown nanotubes/nanosheets of titania (TiO2) and carbon/silver-titania (C/Ag-TiO2) comprise a mixture of both anatase and TiO2(B) crystallographic phases. The first cycle capacity (at current rate = 10 mAg-1) for bare TiO2 nanotubes was 355 mAhg-1 (approximately 1.06 Li), which is higher than both the theoretical capacity (335 mAhg-1) as well as reported values for pure anatase and TiO2(B) nanotubes. Higher capacity is attributed to a combination of presence of mixed crystallographic phases of titania as well as trivial size effects. The surface area of bare TiO2 nanotubes was very high being equal to 340 m2g-1. Surface modification of the TiO2 nanotubes via amorphous carbon and Ag nanoparticles resulted in significant improvement in battery performance. The first cycle irreversible capacity loss can be minimized via effective coating of the surface. Carbon coated TiO2 nanotubes showed superior performance than Ag nanoparticle coated TiO2 nanotubes in terms of long term cyclability. Unlike Ag nanoparticles which are randomly distributed over the TiO2 nanotubes, the effective homogeneous carbon coating forms an efficient percolation network for the conducting species thus exhibiting better battery performance. The C-TiO2 and Ag-TiO2 nanotubes showed a better rate capability i.e. higher capacities compared to bare TiO2 nanotubes in the current range 0.055-2 Ag-1. Although titania nanosheets retains mixed crystallographic phases, the lithium battery performance (first cycle capacity = 225 mAhg-1) is poor compared to TiO2 nanotubes. It is attributed to lower surface area (22 m2g-1) which resulted in lesser electrode/electrolyte contact area and inefficient transport pathways for Li+ and e-. Implications of iron on electrochemical lithium insertion/removal capacity of iron (Fe3+) doped anatase TiO2 is discussed in Chapter 5. Iron doped anatase TiO2 nanoparticles with different doping concentrations were synthesized by simple sol-gel method. The electrochemistry of anatase TiO2 is observed to be a strong function of concentration of iron (Fe3+). A high 1st cycle discharge capacity of 704 mAhg−1 (2.1 mol of Li) and 272 mAhg−1 (0.81 mol of Li) at the 30th discharge cycle with Coulombic efficiency greater than 96% has been observed for 5% iron (Fe3+) doped TiO2 at a current density of 75 mAg−1. Additional increase in the iron (Fe3+) concentrations deteriorates the lithium storage of TiO2. An improvement in lithium storage of more than 50% is noticed for 5% iron (Fe3+) doped TiO2 compared to pure anatase TiO2 which shows an initial discharge capacity of 279 mAhg−1. The anomalous lithium storage behavior in all the iron (Fe3+) doped TiO2 has been accounted, in addition to homogeneous Li insertion in the octahedral sites, on the basis of formation of metallic Fe and Li2O during initial lithiation process and subsequent heterogeneous interfacial storage between Fe and Li2O interface. Chapter 6 discusses in a systematic manner the crucial role of oxide surface chemical composition on ion transport in “soggy sand” electrolytes. A “soggy sand” electrolytic system comprising of aerosil silica functionalized with various hydrophilic and hydrophobic moeities dispersed in lithium perchlorate ethylene glycol solution ( = 37.7) was used for the study. Detailed rheology studies show that the attractive particle network in case of the composite with unmodified aerosil silica (with surface silanol groups) is most favorable for percolation in ionic conductivity as well as rendering the composite with beneficial elastic mechanical properties. Though weaker in strength compared to the composite with unmodified aerosil particles, attractive particle networks are also observed in composites of aerosil particles with surfaces partially substituted with hydrophobic groups. However, ionic conductivity is observed to be dependent on the size of the hydrophobic moiety. No spanning attractive particle network was formed for aerosil particles with surfaces modified with stronger hydrophilic groups (than silanol) and as a result no percolation in ionic conductivity was observed. The composite with hydrophilic particles was a sol contrary to gels obtained in case of unmodified aerosil and partially substituted with hydrophobic groups. Chapter 7 also discusses the influence of oxide surface chemical composition but additionally the role of solvent on ion solvation and ion transport of “soggy sand” electrolytes. Compared to the liquid electrolyte in Chapter 6, a lower dielectric constant liquid electrolyte was employed for the study in this chapter. A “soggy sand” electrolyte system comprising of dispersions of hydrophilic/hydrophobic functionalized aerosil silica in lithium perchlorate-methoxy polyethylene glycol solution ( = 10.9) was employed for the study. Static and dynamic rheology measurements again showed formation of an attractive particle network in case of the composite with unmodified aerosil silica (i.e. with surface silanol groups) as well as composites with hydrophobic alkane groups. While particle network in the composite with hydrophilic aerosil silica (unmodified) were due to hydrogen bonding, hydrophobic aerosil silica particles were held together via van der Waals forces. The network strength in the latter case (i.e. for hydrophobic composites) were weaker compared with the composite with unmodified aerosil silica. Both unmodified silica as well as hydrophobic silica composites displayed solid-like mechanical strength. However, this time around no enhancement in ionic conductivity compared to the liquid electrolyte was observed in case of the unmodified silica. This is attributed to the existence of a very strong particle network which leads to the “expulsion” of all conducting entities from the interfacial region between adjacent particles. The ionic conductivity for composites with hydrophobic aerosil particles displayed ionic conductivity as a function of the size of the hydrophobic chemical moiety. No spanning attractive particle network was observed for aerosil particles with surfaces modified with stronger hydrophilic groups (than silanol). The composite resembled a sol and no percolation in ionic conductivity was observed. Chapter 8 describes the influence of dispersion of uniformly sized mono-functional or bi-functional (“Janus”) particles on ionic conductivity in lithium battery solutions and it’s implications on battery performance. Mono-functionalized (hydrophilic or hydrophobic) and bi-functionalized Janus (hydrophilic and hydrophobic) particles form physical gels of varying strength over a wide range of concentration (0.1    0.4; , oxide volume fraction). While the composites with mono-functionalized particles display shear thinning typical of gels (due to gradual breaking up spanning particle network held together by hydrogen/van der Walls force), the bi-functionalized “Janus” particles exhibit both complementary properties of gel and sol. The latter observation is interpreted in terms of existence of both hydrogen and van der Waals force arising out of the particle arrangement which get perturbed under the influence of external shear. Composites with homogeneous hydrophilic surface group show the highest ionic conductivity whereas the homogeneous hydrophobic surfaces exhibit superior electrode/electrolyte interface stability and battery cyclability. The Janus particles did not show any enhancement in ionic conductivity however, battery performance is highly satisfactory taking intermediate values between the homogeneously functionalized hydrophilic and hydrophobic particle composites.
543

Sistemas aquosos bifásicos de polietilenoglicol e sais inorgânicos : modelo estatístico / Aqueous two-phase systems of polyethylene glycol and inorganic salts : statistical models

Braga, Filipe Leôncio, 1985- 26 August 2018 (has links)
Orientador: Mário Noboru Tamashiro / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-26T19:25:53Z (GMT). No. of bitstreams: 1 Braga_FilipeLeoncio_D.pdf: 3256250 bytes, checksum: 73d43bfd44605cb6f23213feb8aeedf9 (MD5) Previous issue date: 2015 / Resumo: Modelos termo-estatísticos que tentam reproduzir o comportamento de soluções aquosas de polímeros foram amplamente estudados ao longo dos anos. Entretanto, o número de trabalhos relacionados a sistemas aquosos contendo polímeros e sais adicionados ainda é bem restrito. Na tese desenvolvida, abordamos através de uma modelagem de Flory-Huggins a formação de sistemas aquosos bifásicos contendo cadeias poliméricas longas de polietileno-glicol em misturas contendo sais inorgânicos monovalentes. Dentro da modelagem, a competição entre a formação de ligações de hidrogênio por parte das moléculas de água e os monômeros da cadeia polimérica, além das interações íon-dipolo entre água e os íons dos sais dissociados, desempenham papel fundamental na formação das configurações de equilíbrio. Através de ajustes numéricos de dados experimentais, para cada tipo de sal introduzido na mistura, com previsões do modelo para as menores temperaturas para a formação das duas fases, as chamadas Cloud Point Temperatures (CPT), encontramos um conjunto de quatro parâmetros de interação que possibilitam a reprodução adequada do comportamento contínuo das CPT's em função das concentrações dos solutos / Abstract: Thermal-statistical models that try to reproduce the behavior of aqueous polymer solutions have been extensively studied over the years. However, the number of articles related to aqueous systems containing polymers and added salts is still very restricted. Across the developed thesis, we work with a Flory-Huggins theory to model the formation of aqueous two-phase systems containing long-polymer chains of polyethylene-glycol in mixtures containing monovalent inorganic salts. Within the model, the competition between the hydrogen-bond formation between water molecules and the monomers of the polymer chain, in addition to the ion-dipole interactions between water and the dissociated salt ions play a key role in shaping equilibrium configurations. Through numerical fits of experimental data for each type of salt introduced into the mixture with model predictions for the lowest temperatures for the formation of two phases, so-called Cloud Point Temperature (CPT), we find a set of four parameters of interaction that enable proper representation of the continuous behavior of CPT's as a function of the solutes concentration / Doutorado / Física / Doutor em Ciências
544

Atomic Layer Deposition of H-BN(0001) on Transition Metal Substrates, and In Situ XPS Study of Carbonate Removal from Lithium Garnet Surfaces

Jones, Jessica C. 05 1900 (has links)
The direct epitaxial growth of multilayer BN by atomic layer deposition is of critical significance forfo two-dimensional device applications. X-ray photoelectron spectroscopy (XPS) and low energy electron diffraction (LEED) demonstrate layer-by-layer BN epitaxy on two different substrates. One substrate was a monolayer of RuO2(110) formed on a Ru(0001) substrate, the other was an atomically clean Ni(111) single crystal. Growth was accomplished atomic layer deposition (ALD) cycles of BCl3/NH3 at 600 K substrate temperature and subsequent annealing in ultrahigh vacuum (UHV). This yielded stoichiometric BN layers, and an average BN film thickness linearly proportional to the number of BCl3/NH3 cycles. The BN(0001)/RuO2(110) interface had negligible charge transfer or band bending as indicated by XPS and LEED data indicate a 30° rotation between the coincident BN and oxide lattices. The atomic layer epitaxy of BN on an oxide surface suggests new routes to the direct growth and integration of graphene and BN with industrially important substrates, including Si(100). XPS and LEED indicated epitaxial deposition of h-BN(0001) on the Ni(111) single crystal by ALD, and subsequent epitaxially aligned graphene was deposited by chemical vapor deposition (CVD) of ethylene at 1000 K. Direct multilayer, in situ growth of h-BN on magnetic substrates such as Ni is important for spintronic device applications. Solid-state electrolytes (SSEs) are of significant interest for their promise as lithium-ion conducting materials but are prone to degradation due to lithium carbonate formation on the surface upon exposure to atmosphere, adversely impacting Li ion conduction. In situ XPS monitored changes in the composition of the SSE Li garnet (Li6.5La3Zr1.5Ta0.5O12, LLZTaO) upon annealing in UHV and upon Ar+ ion sputtering. Trends in core level spectra demonstrate that binding energy (BE) calibration of the Li 1s at 56.4 eV, yields a more consistent interpretation of results than the more commonly used standard of the adventitious C 1s at 284.8 eV. Annealing one ambient-exposed sample to >1000 K in UHV effectively reduced surface carbonate and oxygen, leaving significant amounts of carbon in lower oxidation states. A second ambient-exposed sample was subjected to 3 keV Ar+ ion sputtering at 500 K in UHV, which eliminated all surface carbon, and reduced the O 1s intensity and BE. These methods present alternative approaches to lithium carbonate removal than heating or polishing in inert atmospheres and are compatible with fundamental surface science studies. In particular, the data show that sputtering at mildly elevated temperatures yields facile elimination of carbonate and other forms of surface carbon. This is in contrast to annealing in either UHV or in noble gas environments, which result in carbonate reduction, but with significant remnant coverages of other forms of carbon.
545

Gelové polymerní elektrolyty s retardéry hoření / Gel polymer electrolytes with fire retardands

Veselkova, Iuliia January 2017 (has links)
This graduate work deals with the study and preparation of gel polymer electrolytes with flame retardants for lithium-ion batteries. The theoretical part describes the types of electrolytes, their features, benefits, how they differ and where they are used in detail. The basis of this section is gel electrolytes with flame retardants, to measure their electrical and electrochemical properties. The experimental part deals with the preparation of samples of gel electrolytes with different percentages of flame retardant, where varied species of flame retardants and measuring their electrical conductivity and potential windows. Impedance spectroscopy, cyclic voltammetry and dynamic-analytical thermal analysis were selected as measuring methods.
546

Elektrické charakteristiky diafragmového výboje v roztocích elektrolytů / Electric characteristics of the diaphragm discharge in electrolyte solutions

Dřímalková, Lucie January 2011 (has links)
The main object of this thesis is the diagnostics of the diaphragm discharge generated in water solutions containing supporting electrolytes (mostly NaCl), and description of particular processes before and after discharge breakdown by DC non-pulsed voltage up to 2 kV. Although many applications of electric discharge in liquids have been developed during the last years, the exact mechanism of the discharge ignition is not sufficiently known up to now. Based on this reason, this work is focused on the investigation of processes before the discharge ignition, breakdown parameters and the discharge itself both in the irregular and stable regime. The theoretical part of the work presents proposed mechanisms of the discharge generation in water solutions including the description of particular kinds of known discharges. Diaphragm discharge is one of many possible configurations of electrical discharges in liquids. In fact, electrical discharge in water forms non-thermal plasma, which is generated by high voltage, and many physical and chemical processes are started in plasma channels (so-called streamers). Among physical processes, high electrical field, shock waves and last but not least emission of electromagnetic radiation in visible and ultra-violet radiation belongs. The most important chemical processes are generation of various active species as hydrogen peroxide, and OH radical. Three batch plasma reactors using a diaphragm configuration with different total volume (4 l, 100 ml and 50 ml) are employed in the presented work. The discharge is created in an orifice (a pin-hole) in the dielectric barrier separating two electrode parts of the reactor. DC non-pulsed high voltage up to 4 kV is used for the discharge generation. Electrodes are made of stainless steel or platinum, and they are installed in parallel to the diaphragm in a variable distance from the dielectric barrier in each reactor part. The dielectric barrier is made of PET or Shapal-MTM ceramics with the variable thickness (0.2?2 mm). One pin hole st the diaphragm center with diameter of 0.2?1.5 mm are used in contemporary experiments. Time resolved characteristics of current and voltage are recorded using four-channel oscilloscope which detected their output values. Parameters are measured by the constantly increasing DC voltage with a step of 100 V. The solutions containing sodium chloride electrolyte are used at five different conductivities. Recorded time resolved characteristics determine breakdown moment, and describe current and voltage in particular parts within the static current-voltage curve. The breakdown appeared at lower applied voltage when the electrode distance is enhanced. However, the electrode distances higher than 4 cm does not induce any significant change of the breakdown voltage. The influence of pin-hole diameter is less obvious in the studied range, but a slight enhancement of breakdown voltage is observed with the increasing pin-hole diameter. Current-voltage characteristic curve moves towards lower voltage with the diaphragm thickness enhancement. The work compares the influence of conductivity change on current-voltage characteristics as well as the effect of inorganic salt kind. By the conductivity enhancement, the measured current-voltage curve moves towards lower voltage which means that the breakdown voltage is decreased. Sizes of the reactors do not have any effect on the processes before and after discharge breakdown.
547

Superkondenzátory s kapalnými aprotickými elektrolyty / Liquid electrolytes for supercapacitors

Bill, Jan January 2008 (has links)
This work deals with the preparation of liquid electrolytes from different types of aprotic solvents with the aim of their application as electrolytes in electrochemical supercapacitors. Different sorts of aprotic solvents have been chosen, in which the following forms of salts were used: LiBF4, LiClO4,LiPF6. In the next part of the work, the properties of these solvents were measured and the best electrolyte, according to the biggest possible capacity of the system, was chosen. In the theoretical part of this work, the physical principle of supercapacitors and their propeties are described. It deals with electrolytes, their division and with the properties that are appropriate for supercapacitors. The experimental part of the work describes the process of preparation of the samples of electrodes, electrolytes and the techniques of measuring their capacities.
548

Studium vlastností gelových polymerních elektrolytů pro lithno-iontové akumulátory / Properties study of gel polymer electrolytes for lithium-ion batteries

Zítka, Jan January 2013 (has links)
The present work deals with the research and development of gel polymer electrolytes and their applications. Thesis talks about the mechanisms that take place in gel electro-lytes. It also discusses the electroanalytical methods used in assessing the gel electro-lytes. The main focus of the work is the preparation of gel polymer electrolytes and compared their properties using methods of impedance spectroscopy, cyclic voltam-metry and methods of measurement of transference numbers. KEYWORDS
549

Stabilita aprotických elektrolytů v lithno-iontových akumulátorech / Stability of aprotic electrolytes in lithium-ion batteries

Krištofík, František January 2014 (has links)
The Master thesis describe basic electrochemical processes in lithium-ion batteries and characteristic organic polar solvents for these articles. It focuses primarily on the aprotic liquid electrolytes for lithium-ion batteries and the subsequent use of gas chromatography to analyze the collected gas sample from the test article. For this experiment is, in this Master thesis, designed and described experimental arrangement in the form of a glass cell, which allows collection from the space above the working electrode. Finally, the work evaluates the effect of electrode potential on the stability of electrolytes in strongly positive potentials.
550

Záporné elektrodové materiály v lithium-iontovém akumulátoru / Compatibility of negative electrode materials at system of lithium-ion battery

Šikuda, Milan January 2015 (has links)
This thesis deals with a study of lithium-ion batteries. It is focused into negative electrode materials and electrolytes. In this thesis is presented synthesis, electrochemical properties, possibilities to improving negative electrode materials as LTO (Lithium Titanate Oxid) and graphite. These electrode materials were investigated with respect to their compatibility at electrolytes with carbonate solvents, Sulfolane and DMF (DiMethylFormamide) in detail. The main aim of this thesis is to characterize electrode materials and electrolyte properties depending on wide range of temperatures and their comparison for the purpose of achievement of the best solution. The thesis is divided into two main parts. The theoretical part of thesis describes composition, process of synthesis and analysis of lithium-ion cell. Practical part contains measuring and evaluating of charge-discharge and irreversible capacity characteristics related to variety of environmental temperatures.

Page generated in 0.0185 seconds