• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3137
  • 868
  • 380
  • 301
  • 204
  • 132
  • 74
  • 48
  • 42
  • 29
  • 28
  • 28
  • 28
  • 28
  • 28
  • Tagged with
  • 6982
  • 2414
  • 1316
  • 800
  • 714
  • 657
  • 632
  • 612
  • 611
  • 591
  • 575
  • 535
  • 516
  • 501
  • 482
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
921

Transmission Electron Microscopy Characterization of Photovoltaic Semiconductor Materials

January 2020 (has links)
abstract: The research of this dissertation has primarily involved using transmission electron microscopy (TEM) techniques to study several semiconductor materials considered promising for future photovoltaic device applications. Layers of gallium phosphide (GaP) grown on silicon (Si) substrates were characterized by TEM and aberration-corrected scanning transmission electron microscopy (AC-STEM). High defect densities were observed for samples with GaP layer thicknesses 250nm and above. Anti-phase boundaries (APBs) within the GaP layers were observed at interfaces with the Si surfaces which were neither atomically flat nor abrupt, contradicting conventional understanding of APB formation. Microcrystalline-Si (μc-Si) layers grown on crystalline-Si (c-Si) substrates were investigated. Without nanoparticle seeding, an undesired amorphous-Si (a-Si) layer grew below the μc-Si layer. With seeding, the undesired a-Si layer grew above the μc-Si layer, but μc-Si growth proceeded immediately at the c-Si surface. Ellipsometry measurements of percent crystallinity did not match TEM images, but qualitative agreement was found between TEM results and Ultraviolet Raman spectroscopy. TEM and Xray spectroscopy were used to study metal-induced crystallization and layer exchange for aluminum/ germanium (Al/Ge). Only two samples definitively exhibited both Ge crystallization and layer exchange, and neither process was complete in either sample. The results were finally considered as inconclusive since no reliable path towards layer exchange and crystallization was established. Plan-view TEM images of indium arsenide (InAs) quantum dots with gallium arsenide antimonide (GaAsSb) spacer layers revealed the termination of some threading dislocations in a sample with spacer-layer thicknesses of 2nm, while a sample with 15-nm-thick spacer layers showed a dense, cross-hatched pattern. Cross-sectional TEM images of samples with 5-nm and 10-nm spacer-layer thicknesses showed less layer undulation in the latter sample. These observations supported photoluminescence (PL) and Xray diffraction (XRD) results, which indicated that GaAsSb spacer layers with 10-nm thickness yielded the highest quality material for photovoltaic device applications. a-Si/c-Si samples treated by hydrogen plasma were investigated using high-resolution TEM. No obvious structural differences were observed that would account for the large differences measured in minority carrier lifetimes. This key result suggested that other factors such as point defects, hydrogen content, or interface charge must be affecting the lifetimes. / Dissertation/Thesis / Doctoral Dissertation Physics 2020
922

Elektronový ray tracer / Ray Tracing for Electron Microscope

Suchánek, Jan January 2019 (has links)
This thesis is pointed on simulation of electron microscope. It uses knowledge  from ray-tracing methods and physically based rendering with physics of electron microscopy. The main object of this thesis is to create realistic simulator for electron microscope which can generate satisfying realistic images. This output can be used for another research in range of machine learning or microscope application development. This method should replace long and more expensive way of getting test images from real system for those research activities.
923

Vyhodnocení vlivu výkonu vývěv na proudění plynu ve scintilačním detektoru s ohledem na funkčnost / The influence of the power vacuum in the gas flow scintillation detector with regard to functionality

Čermák, Peter January 2011 (has links)
The work is devoted to problems of electron microscopy, focusing on the scintillation detector, which is located in chamber separating the field from different pressures. Using of the CAD and CAE was created 3D model of the detector, which took place on calculations focused to influence of the performance of different types of air pumps at gas flow between the chambers. The results of individual variants are compared in graphic form and evaluated.
924

Testing RPC Performance with Discharges Ignited by UV Laser Pulses: Precise measurement of gas parameters in approximately realistic RPC configurations

Fan, Xingming 26 November 2019 (has links)
This thesis is devoted in two associated topics: a unique laser facility for researches of gaseous detectors; the investigations of Resistive Plate Chamber (RPC) detectors and the measurement of gas parameters in a realistic condition of timing RPC. A pulsed UV laser test facility has been assembled in HZDR. The focus of pico-second laser pulses is placed in a specific position in a gaseous detector sample to produce laser plasma, where free electrons are generated in ionizations with well defined number, micro-meter spatial accuracy in a volume of micro-meter scale. It provides a method, independent from accelerators, to make investigations with gaseous detectors in a laboratory. Samples of RPC detectors are designed and assembled for experiments with the laser test facility. Methods are developed to acquire the waveforms of electron avalanches for different drift lengths and to obtain the key gas parameters: the effective Townsend coefficient and the electron drift velocity. We have succeeded in the direct measurement of gas parameters at the field strength of timing RPC under atmospheric pressure for the first time in experimental conditions. The research has obtained different achievements. The laser test facility is proven to be qualified for the measurement of gas parameters, and has a potential to contribute to the eco-gas research for future RPC. The possible measurement range of electric field of gas parameter at atmospheric pressure is extended by a factor of two, from the range of trigger RPC to timing RPC. The results of experiments have revealed some fundamental mechanisms, which will extend the understanding of RPC performance and electron avalanche process.
925

Investigation of the Proton Transfer Process in Fluorescence Quenching

Millheim, Shelby Liz 23 May 2022 (has links)
No description available.
926

Pathways linking amygdala, hippocampus and anterior cingulate cortex in emotion, cogntion and memory

Wang, Jingyi 27 September 2020 (has links)
The interaction of emotion and memory is necessary for establishing a cognitive map including current context and past experiences, which is used by prefrontal cortex to regulate the internal state and guide goal directed actions and decision making. The amygdala, hippocampus and anterior cingulate cortex (ACC) play critical roles in these processes, but the organization of pathways between them is largely unknown in primates. This issue was addressed using neural tracers in rhesus monkeys to label the bidirectional pathways between amygdala and hippocampus and the unidirectional pathway from hippocampus to ACC. The amygdala sent a robust projection to hippocampus that formed large and closely spaced dual synapses on spines from the same dendritic segment, suggesting a strong influence. Further, amygdalar axon boutons innervated some disinhibitory calretinin neurons in CA1, suggesting enhanced excitatory influence. In contrast, in CA3 the amygdala pathway innervated calretinin and some of the powerful parvalbumin inhibitory neurons, which may help enhance memory of affective events. The reverse pathway from hippocampus densely and mainly targeted the ventro-medial part of the amygdala, including the basolateral (BL) and paralaminar basolateral (PLBL) nuclei. Hippocampal terminations formed synapses mostly on spines vii of presumed excitatory neurons. Some hippocampal terminations innervated inhibitory neurons in BL and PLBL and showed a rank of preference, by targeting mostly calretinin, and then calbindin and least parvalbumin inhibitory neurons. This pattern of innervation may allow contextual information represented by hippocampus to influence affective processes in the amygdala. The hippocampus sent strong projections to ACC (A32, A24a and A25) and targeted particularly A25, suggesting a role in affective and autonomic regulation. About 90% of hippocampal terminations in A25 innervated excitatory neurons, suggesting strong excitatory effects. The hippocampal pathway had a close relationship with postsynaptic D1 receptors in A25, especially in the deep layers. Dopamine has a strong influence in goal-directed actions, rewards, and attention in prefrontal cortex in primates, and may facilitate contextual information from the hippocampus to A25 to influence emotional regulation. The pathways studied were distinct, and suggest specific roles in emotional memory by the amygdala in hippocampus, in flexible learning and forgetting fear based on context transmitted from hippocampus to the amygdala, and in the synthesis of current context and past experience carried out by the hippocampal pathway to ACC to influence adaptive goal directed behavior. / 2021-09-27T00:00:00Z
927

Far infrared/Tera-Hertz spectroscopy in the gas phase : experiments and theory / Spectroscopie infrarouge en phase gazeuse dans le domaine de l'infrarouge lointain/Tera-Hertz : expériences et théorie

Mahé, Jérôme 08 December 2017 (has links)
La spectroscopie infrarouge permet d’identifier la structure 3D de systèmes moléculaires, par comparaison des spectres mesurés et simulés. Nous travaillons en phase gazeuse, où les molécules et clusters sont libres d’interactions intermoléculaires. Notre travail combine les expériences IR-UV ion-dip et le calcul de spectres IR anharmoniques par la méthode DFT-MD. Le spectre IR est calculé pour les structures 3D de plus basses énergies,le meilleur accord donnant la connaissance de la structure présente dans les conditions expérimentales.Nous démontrons que le domaine de l’IR lointain/THz (<800 cm-1, <24 THz) permet d’identifier sans ambiguïté la structure 3D de molécules et clusters en phase gazeuse, là ou les signatures du domaine 1000-4000 cm-1 peuvent être limitées. Les systèmes considérés sont des dipeptides, un modèle de feuillet β, dérivés du phénol (et complexés à l’eau) des paires de bases de l’ADN, dont les structures sont bâties sur des liaisons hydrogène intra/intermoléculaires. / Infrared spectroscopy allows the assignment of three dimensional structures of molecular systems, by comparing experimental and theoretical spectra. Our investigations take place in the gas phase, where molecules and clusters are free of intermolecular interactions.Our work combines experimental IR-UV ion dip spectroscopy and theoretical DFT-MD anharmonic spectroscopy. The infrared spectrum is calculated for low energy 3Dstructures and the best match between theory and experiment provides the information about the structure present in the experimental conditions.We demonstrate for several systems that far infrared/THz spectroscopy (<800 cm-1, <24THz) allows conformational assignment without ambiguities, contrary to the more traditional 1000-4000 cm-1 range. Systems investigated here are dipeptides, a β-sheet model, phenol derivatives (also complexe dwith water molecules), DNA base pairs, all these structures being built on intra-/intermolecular hydrogen bonds.
928

USING ELECTRON MICROSCOPY TO GAIN STRUCTURAL INSIGHT INTO BIOLOGICALLY RELEVANT, LABILE OR DESTABILIZED PROTEIN COMPLEXES

Scott, Harry W., III January 2018 (has links)
No description available.
929

Determination of Electron Beam Polarization using Electron Detector in Compton Polarimeter with Less than 1% Statistical and Systematic Uncertainty

Narayan, Amrendra 09 May 2015 (has links)
The Q-weak experiment aims to measure the weak charge of proton with a precision of 4.2%. The proposed precision on weak charge required a 2.5% measurement of the parity violating asymmetry in elastic electron - proton scattering. Polarimetry was the largest experimental contribution to this uncertainty and a new Compton polarimeter was installed in Hall C at Jefferson Lab to make the goal achievable. In this polarimeter the electron beam collides with green laser light in a low gain Fabry- Perot Cavity; the scattered electrons are detected in 4 planes of a novel diamond micro strip detector while the back scattered photons are detected in lead tungstate crystals. This diamond micro-strip detector is the first such device to be used as a tracking detector in a nuclear and particle physics experiment. The diamond detectors are read out using custom built electronic modules that include a preamplifier, a pulse shaping amplifier and a discriminator for each detector micro-strip. We use field programmable gate array based general purpose logic modules for event selection and histogramming. Extensive Monte Carlo simulations and data acquisition simulations were performed to estimate the systematic uncertainties. Additionally, the Moller and Compton polarimeters were cross calibrated at low electron beam currents using a series of interleaved measurements. In this dissertation, we describe all the subsystems of the Compton polarimeter with emphasis on the electron detector. We focus on the FPGA based data acquisition system built by the author and the data analysis methods implemented by the author. The simulations of the data acquisition and the polarimeter that helped rigorously establish the systematic uncertainties of the polarimeter are also elaborated, resulting in the first sub 1% measurement of low energy ( 1 GeV) electron beam polarization with a Compton electron detector. We have demonstrated that diamond based micro-strip detectors can be used for tracking in a high radiation environment and it has enabled us to achieve the desired precision in the measurement of the electron beam polarization which in turn has allowed the most precise determination of the weak charge of the proton.
930

The paramagnetic properties of NI2 in a double nitrate.

Kao, Dominic Wen January 1969 (has links)
No description available.

Page generated in 0.0347 seconds