51 |
Estudo de Litografia por Feixe de Elétrons para a Produção de Padrões Sobre Substratos de Eletroestruturas / Study of electron beam lithografhy for patterns production on semiconductor heterostructrucres substrata.Marcelo de Assumpcao Pereira da Silva 17 December 1996 (has links)
Este trabalho trata do estudo das condições para a produção de padrões em escala nano e micrométricas, utilizando o processo de litografia eletrônica. A parte inicial refere-se ao estudo do elétron-resiste de PMMA incluindo a preparação da solução, o recobrimento do substrato e a secagem. Em seguida, são apresentados estudos sobre o funcionamento do sistema de litografia por feixe de elétrons em detalhe. São tratados problemas com o resiste, o substrato e a interação com a amostra. São apresentados os aspectos mais importantes dos substratos utilizados, sendo dado um enfoque a heteroestruturas semicondutoras com gás de elétrons bidimensionais. As condições para revelação do resiste e das etapas de processamento para que seja feita a replicação para o substrato do padrão gerado no resiste são também abordadas. Diversos estudos foram realizados para mostrar a influência de alguns efeitos comuns na litografia como a influência da espessura do filme de resiste e os efeitos de proximidade. Também trata da produção de padrões sobre substratos diversos como GaAs, VIDRO, ALUMINA e PRATA. A última etapa estuda a utilização de um resiste híbrido PMMA-Sílica como um método de conformação cerâmica. Finalmente é apresentado um estudo relativo a produção de diversos padrões diferentes sobre heteroestruturas semicondutoras de AlGaAs/GaAs. / The work describe the conditions for pattern production at nano and micrometric scale using the electronic lithographic process. In the first part many types of lithographic technics are compared and the aim why the electron beam lithographic nanostructured production was chosen. Detailed results about operation with the lithographic system and some problems related to electron resist, substrate and interaction between electron beam and sample are presented. The most important substrate aspects are shown. The two dimensional electron gas (2DEG) semiconductors heterostrutures and the M B E process to grow samples are discussed too. The conditions to develop electron resist and steps for pattern transfer over the substrate are discussed. Many experimental studies were realized to show the influence and some effects, common to the lithographic process, such as electron resist thickness and the proximity effect. A production of pattern on some kind of substrate like GaAs, Glass, Aluminum, Silver can also be observed. In the last part of this work some discussion about utilisation of hybrid electron resist composite PMMA-Silica was done, as well as very important technics for ceramic conformation. Finally, the main goal of this work is presented: the production of different nanostructure samples using AlGaAs/GaAs substrates.
|
52 |
Generation of micro/nano metallic nanostructures using self-assembled monolayers as template and electrochemistryShe, Zhe January 2012 (has links)
This thesis studies a scheme to fabricate small-scaled metal structures by electrochemical metal deposition and lift off. The key point is the use of self-assembled monolayers (SAMs) to control both interfacial charge transfer in electrodeposition and adhesion of the deposit to the substrate. Patterned SAMs exhibiting blocking and non-blocking areas are applied as templates in electrochemical deposition of Cu or Au. Thiol SAMs on Au substrates are used, namely alkane thiols and thiols combining an aliphatic chain with a biphenyl or biphenyl analogous pyridine-phenyl moieties. The patterning of SAMs is realised with microcontact printing (μCP) and electron beam lithography. Electrochemical deposition based on defects in the SAMs is optimised towards generating small nanostructures and depending on the system single or stepped potential procedures are applied. Generated metal structures are transferred to an insulator by lift off. Au microstructures (~10 μm) have been made with microcontact printing and transferred onto epoxy glue, which can potentially be used as microelectrodes in electroanalytical chemistry. Sub-100 nm Cu features and sub-40 nm Au features have been created with electron beam lithography respectively. Lift off process has successfully transferred Cu nanostructures onto epoxy glue with high precision. In contrast to the deposition mediated by defects, Cu deposition mediated by discharging Pd²⁺ coordinated to a pyridine terminated SAM directly through the SAM molecules has been explored as a new approach. This new approach has potential to decrease the size of the metal structure further and the preliminary results show possibility of sub-10 nm features. SAMs prepared with a newly synthesised molecule, 3-(4'-(methylthio)-[1,1'-biphenyl]-4-yl)propane-1-thiol, are characterised by STM, XPS and NEXAFS. The metal structures are investigated by SEM, AFM and STM.
|
53 |
Studium vlastností povrchových plazmonových polaritonů na magnetických materiálech / Study of Properties of Surface Plasmon Polaritons on Magnetic MaterialsDvořák, Petr January 2011 (has links)
The diploma thesis deals with the experimental study of surface plasmon polaritons (SPPs) on nano-structures with the Au/Co/Au multilayer. Plasmonic structures were prepared by the electron beam lithography and by the focused ion beam. A Scanning optical near-field microscope was used for detection of surface plasmon polaritons. SPPs were confirmed by the experiment with different polarizations of the illuminating light. Furthermore, differences in plasmon interference wavelengths was measured for different surface dielectric functions. Finally, the decantation of the SPPs interference image was measured in dependence on the external magnetic field.
|
54 |
Aplikace grafénové membrány v nanoelektronických zařízeních / Application of Graphene Membrane in Nanoelectronic DevicesKormoš, Lukáš January 2015 (has links)
This diploma thesis is focused on the applications and fabrication of graphene membrane from graphene prepared by the chemical vapor deposition. Theoretical part deals with transport properties of the graphene and multiple scattering processes limiting the charge carrier mobility in this material. Included is short review of graphene membrane applications. Experimental part provides fabrication process for achieving suspended graphene device by utilizing electron beam lithography, focused ion beam, chemical etching and patterning of graphene. Graphene membrane is characterized by transport properties measurement and compared to non-suspended graphene.
|
55 |
Elektrostatické vychylovací a korekční systémy / Electrostatic Deflection and Correction SystemsBadin, Viktor January 2015 (has links)
The aim of this master's thesis is to explore and study dynamic aberration correction options in electron-beam lithography systems. For the calculations, the thesis uses the optical column of the BS600 electron-beam writer. The thesis focuses on corrections of the third order field curvature, astigmatism, and distortion aberrations of the currently used magnetic deflection system and a newly designed electrostatic deflection system. The parameters of the two deflection and correction systems were compared.
|
56 |
Selektivní růst GaN nanostruktur na křemíkových substrátech / Selective growth of GaN nanostructures on silicon substratesKnotek, Miroslav January 2015 (has links)
This thesis deals with deposition of gallium nitride thin films on silicon substrates covered by negative HSQ rezist. Rezist was patterned via electron beam lithography to create masks, where the selective growth of crystals was achieved. Growth of GaN layers was carried out by MBE method. For achievement of desired selective growth, the various deposition conditions were studied.
|
57 |
Tvorba nanostruktur a nanosoučástek pro oblast nanoelektroniky a spintroniky / Fabrication of Nanostructures and Nanodevices for Nanoelectronics and SpintronicsLišková, Zuzana January 2015 (has links)
The thesis deals with preparation of graphene nanostructures and their applications in the measurement of transport properties of graphene. The contacts for measurement of resistance are fabricated by electron beam lithography on graphene exfoliated flakes, CVD graphene layers and grains. Graphene is also shaped using the same method. Resistivity of the layer, concentration and mobility of charge carriers are determined by different approaches. Hysteresis appearing in dependence of resistivity on the gate voltage is discussed as well. A significant part of the work is dedicated to monitoring the response of graphene resistance to relative humidity changes and potential use of graphene as a sensor of relative humidity.
|
58 |
Patterning and Characterization of Ferrimagnets for Coherent MagnonicsFranson, Andrew J. January 2020 (has links)
No description available.
|
59 |
INTEGRATED VACUUM TRANSISTORS AND FIELD EMITTER ARRAYSShabnam Ghotbi (14034600) 16 June 2023 (has links)
<p> The arrival of Si transistors and integrated circuit technology more than half a century ago made vacuum electronic technology almost extinct. Today, there are only a few niche applications for vacuum electronics. The main issues with this technology are its high voltage requirement and high-power consumption, difficult and costly fabrication technology, lack of integration capability, and poor reliability characteristics. Some of these issues may be addressed by going to nm scale fabrication that did not exist 60 years ago. Other problems such as reliability and lack of integration capability require alternative solutions to what has been proposed so far. Vacuum is the ultimate conduction media allowing electrons to reach the speed of light without any scattering. Consequently, a vacuum transistor, if designed correctly, can achieve THz frequency performance, while delivering Watt-level powers. No semiconductor technology can compete with vacuum technology to deliver such performance. </p>
<p>In this work, novel methods for implementing nanoscale field emitter arrays used in vacuum electronics are proposed. Gated and ungated field emitters are fabricated with self-assembly technology and electron beam lithography. Different anisotropic dry etching recipes are developed to achieve emitters with different sharpness and aspect ratios. Our methods lead to field emitter array operation under low voltages (less than 20 V) and high current densities (around 50 A/cm2) using self-assembly and soft film anode-cathode isolator, and field emitter devices with ~4.5 A/cm2 current density with a turn-on voltage less than 50 V using electron beam lithography and oxide anode-cathode isolator. </p>
<p>Making reliable field emitter devices is challenging. Due to Joule heating, ion bombardment, and geometrical variations for each tip in the field emitter arrays, emission current becomes nonuniform across the array. Sharper tips emit at a higher rate and eventually, the heat generated at the tip deforms the tips leading to electron emission at a lower rate. With ultra-low doped emitters, the current of each tip is limited to a few nano-amperes leading to a negligible current fluctuation at the tips. </p>
<p>Our fabricated ultra-low doped devices with both self-assembly and electron beam lithography techniques presented constant emission current with almost no change over 24 hours of continuous operation. Such excellent reliability characteristics in vacuum field emitter devices have not been demonstrated to date.</p>
<p>The screening effect in close-packed field emitter arrays which occurs by nearby conductive or semiconductive objects is thoroughly investigated and different solutions are proposed to reduce this effect between the emitters. Simulation studies using Sentaurus TCAD, MATLAB, and COMSOL Multiphysics simulators facilitated the design and optimization of gated and ungated field emitter arrays. These studies included the effect of sharpness, the distance between neighboring emitters, enclosing the emitters by a Si block around the emitters as well as anode-cathode separation on the electrical characterization of field emitter arrays. </p>
<p>The optimum location and operating voltages which lead to a maximum gate control and emitter current density are also studied for gated field emitter arrays. Instead of individually gating each field emitter, it was found that controlling the emission of a sub-array with a metallic all-around gate is more efficient and it leads to higher current densities. Guided by simulations, gated field emitter arrays with 5×5 and 2×2 sub-arrays are developed. In terms of strength of the grid control (transconductance), turn-on voltage, maximum emission current, and field intensification factor, the device with the 2×2 sub-array was superior to the one with the 5×5 sub-array. The VFET with 5×5 sub-arrays achieved a higher current density due to a larger number of field emitters packed per active emission area. Finally, plans to further improve the technology and transitioning into the fabrication of vacuum integrated circuits are discussed.</p>
<p> </p>
|
60 |
Direct Write of Chalcogenide Glass Integrated Optics Using Electron BeamsHoffman, Galen Brandt 16 December 2011 (has links)
No description available.
|
Page generated in 0.0244 seconds