• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6033
  • 1235
  • 1235
  • 1235
  • 1235
  • 1235
  • 1232
  • 786
  • 309
  • 296
  • 283
  • 181
  • 76
  • 54
  • 35
  • Tagged with
  • 12761
  • 8315
  • 8174
  • 1706
  • 1595
  • 1216
  • 1081
  • 1008
  • 790
  • 783
  • 655
  • 498
  • 465
  • 399
  • 385
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Surface element analysis of the far-field behaviour of a dipole antenna near a conducting cylinder.

Bayou, Tesfaye. January 1973 (has links)
No description available.
262

Fractional tap-spacing equalizers for data transmission

Nattiv, Moshe January 1979 (has links)
No description available.
263

Wire-grid analysis of antennas near conducting surfaces.

Wolde-Ghiorgis, Woldemariam. January 1972 (has links)
No description available.
264

Enhancement of Antenna Array Performance Using Reconfigurable Slot-Ring Antennas and Integrated Filter/Antennas

Li, Tianjiao 01 January 2017 (has links)
As modern communication system technology develops, the demand for devices with smaller size, higher efficiency, and more functionality has increased dramatically. In addition, highly integrated RF-front-end modules with a reduced footprint and less transition loss between cascaded devices are desirable in most advanced wireless communication systems. Antenna arrays are widely used in wireless communication systems due to their high directivity and beam steering capability. Moreover, antenna arrays are preferred in mobile communication systems for diversity reception to reduce signal fading effects. In order to meet the various requirements of rapidly developing wireless communication systems, low cost, compact, multifunctional integrated antenna arrays are in high demand. Reconfigurable antennas that can flexibly adapt to different applications by dynamically changing their frequency and radiation properties have attracted a lot of attention. Frequency, radiation pattern, polarization, or a combination of two or more of these parameters in the reconfiguration of antennas was studied and presented in recent years. A single reconfigurable antenna is able to replace multiple traditional antennas and accomplish different tasks. Thus, the complexity of wireless communication systems can be greatly reduced with a smaller device size. On the other hand, the integration of antennas with other devices in wireless communication systems that can improve the efficiency and shrink the device size is a growing trend in antenna technology. Compact and highly efficient integrated filters and antennas were studied previously; the studies show that by seamlessly co-designing filters with patch antennas, the fractional bandwidth (FBW) of the antennas can be enhanced as compared to stand-alone antennas. However, the advantages of both the reconfigurable antenna and integrated filter/antenna technology have not been fully applied to antenna array applications. Therefore, this dissertation explores how to maximize the antenna array performance using reconfigurable antennas and integrated filter/antennas. A continuously frequency reconfigurable slot-ring antenna/array with switches and varactors is presented first. By changing the state of the loaded switches, the reconfigurable slot-ring antenna/array is able to operate as an L-band slot-ring antenna or a 2x2 S-band slot-ring antenna array. In each frequency band, the operation frequency of the antenna/array can be continuously tuned with the loaded varactors. To further enhance the functionality of the reconfigurable slot-ring antenna array, a dual-polarized fractal-shaped reconfigurable slot-ring antenna/array is developed with a reduced number of switches and an increased FBW. Additionally, ground plane solutions are explored to achieve single-sided radiation. The benefits of filter/antenna integration are also investigated in both linearly polarized patch phased arrays and circularly polarized patch antenna arrays. Finally, a preliminary study of a tunable integrated evanescent mode filter/antenna is conducted to validate the concept of combining reconfigurable antennas and integrated filter/antennas.
265

LDMOS Power Transistor Design and Evaluation using 2D and 3D Device Simulation

Salih, Aiman 01 January 2017 (has links)
The benefit of the super-junction (SJ) technique and the use of a floating P layer for low voltage (30 V) laterally double-diffused metal oxide semiconductor (LDMOS) transistors are investigated in this thesis using Sentaurus TCAD simulation software. Optimizations to the SJ LDMOS were attempted such as adding a buffer layer to the device, but simulation and theoretical evidence point out that the benefits of the SJ technique are marginal at the 30 V application. A replacement for the SJ technique was sought, the floating P structure proved to be a good solution at the low voltage range due to its simpler cost effective process and performance gains achieved with optimization. A new idea of combining the floating P layer with shallow trench isolation is simulated yielding a low figure of merit (on state resistance x gate charge) of 5.93 mΩ-nC.
266

Artificial Neuron using MoS2/Graphene Threshold Switching Memristor

Kalita, Hirokjyoti 01 January 2018 (has links)
With the ever-increasing demand for low power electronics, neuromorphic computing has garnered huge interest in recent times. Implementing neuromorphic computing in hardware will be a severe boost for applications involving complex processes such as pattern recognition. Artificial neurons form a critical part in neuromorphic circuits, and have been realized with complex complementary metal–oxide–semiconductor (CMOS) circuitry in the past. Recently, insulator-to-metal-transition (IMT) materials have been used to realize artificial neurons. Although memristors have been implemented to realize synaptic behavior, not much work has been reported regarding the neuronal response achieved with these devices. In this work, we study the IMT in 1T-TaS2 and the volatile threshold switching behavior in vertical-MoS2 (v-MoS2) and graphene van der Waals heterojunction system. The v-MoS2/graphene threshold switching memristor (TSM) is used to produce the integrate-and-fire response of a neuron. We use large area chemical vapor deposited (CVD) graphene and MoS2, enabling large scale realization of these devices. These devices can emulate the most vital properties of a neuron, including the all or nothing spiking, the threshold driven spiking of the action potential, the post-firing refractory period of a neuron and strength modulated frequency response. These results show that the developed artificial neuron can play a crucial role in neuromorphic computing.
267

High Quality Gate Dielectric/MoS2 Interfaces Probed by the Conductance Method

Krishnaprasad Sharada, Adithi Pandrahal 01 January 2018 (has links)
Two-dimensional materials provide a versatile platform for various electronic and optoelectronic devices, due to their uniform thickness and pristine surfaces. We probe the superior quality of 2D/2D and 2D/3D interfaces by fabricating molybdenum disulfide (MoS2)-based field effect transistors having hexagonal boron nitride (h-BN) and Al2O3 as the top gate dielectrics. An extremely low trap density of ~7x10^10 states/cm2-eV is extracted at the 2D/2D interfaces with h-BN as the top gate dielectric on the MoS2 channel. 2D/3D interfaces with Al2O3 as the top gate dielectric and SiOx as the nucleation layer exhibit trap densities between 7x10^10 and 10^11 states/cm2-eV, which is lower than previously reported 2D-channel/high-k-dielectric interface trap densities. The comparable values of trap time constants for both interfaces imply that similar types of defects contribute to the interface traps. This work establishes the case for van der Waals systems where the superior quality of 2D/2D and 2D/high-k dielectric interfaces can produce high performance electronic and optoelectronic devices.
268

Different Facial Recognition Techniques in Transform Domains

Al Obaidi, Taif 01 January 2018 (has links)
The human face is frequently used as the biometric signal presented to a machine for identification purposes. Several challenges are encountered while designing face identification systems. The challenges are either caused by the process of capturing the face image itself, or occur while processing the face poses. Since the face image not only contains the face, this adds to the data dimensionality, and thus degrades the performance of the recognition system. Face Recognition (FR) has been a major signal processing topic of interest in the last few decades. Most common applications of the FR include, forensics, access authorization to facilities, or simply unlocking of a smart phone. The three factors governing the performance of a FR system are: the storage requirements, the computational complexity, and the recognition accuracy. The typical FR system consists of the following main modules in each of the Training and Testing phases: Preprocessing, Feature Extraction, and Classification. The ORL, YALE, FERET, FEI, Cropped AR, and Georgia Tech datasets are used to evaluate the performance of the proposed systems. The proposed systems are categorized into Single-Transform and Two-Transform systems. In the first category, the features are extracted from a single domain, that of the Two-Dimensional Discrete Cosine Transform (2D DCT). In the latter category, the Two-Dimensional Discrete Wavelet Transform (2D DWT) coefficients are combined with those of the 2D DCT to form one feature vector. The feature vectors are either used directly or further processed to obtain the persons' final models. The Principle Component Analysis (PCA), the Sparse Representation, Vector Quantization (VQ) are employed as a second step in the Feature Extraction Module. Additionally, a technique is proposed in which the feature vector is composed of appropriately selected 2D DCT and 2D DWT coefficients based on a residual minimization algorithm.
269

Design of Low-Capacitance Electrostatic Discharge (ESD) Protection Devices in Advanced Silicon Technologies.

Dong, Aihua 01 January 2018 (has links)
Electrostatic discharge (ESD) related failure is a major IC reliability concern and this is particularly true as technology continues shrink to nano-metric dimensions. ESD design window research shows that ESD robustness of victim devices keep decreasing from 350nm bulk technology to 7nm FinFET technologies. In the meantime, parasitic capacitance of ESD diode with same It2 in FinFET technologies is approximately 3X compared with that in planar technologies. Thus transition from planar to FinFET technology requires more robust ESD protection however the large parasitic capacitance of ESD protection cell is problematic in high-speed interface design. To reduce the parasitic capacitance, a dual diode silicon controlled rectifier (DD-SCR) is presented in this dissertation. This design can exhibit good trade-offs between ESD robustness and parasitic capacitance characteristics. Besides, different bounding materials lead to performance variations in DD-SCRs are compared. Radio frequency (RF) technology is also demanded low capacitance ESD protection. To address this concern, a ?-network is presented, providing robust ESD protection for 10-60 GHz RF circuit. Like a low pass ? filter, the network can reflect high frequency RF signals and transmit low frequency ESD pulses. Given proper inductor value, networks can work as robust ESD solutions at a certain Giga Hertz frequency range, making this design suitable for broad band protection in RF input/outputs (I/Os). To increase the holding voltage and reduce snapback, a resistor assist triggering heterogeneous stacking structure is presented in this dissertation, which can increase the holding voltage and also keep the trigger voltage nearly as same as a single SCR device.
270

Design of an Automotive IoT Device to Improve Driver Fault Detection Through Road Class Estimation

Murray, Matt 01 June 2022 (has links) (PDF)
Unsafe driver habits pose a serious threat to all vehicles on the road. This thesis outlines the development of an automotive IoT device capable of monitoring and reporting adverse driver habits to mitigate the occurrence of unsafe practices. The driver habits targeted are harsh braking, harsh acceleration, harsh cornering, speeding and over revving the vehicle. With the intention of evaluating and expanding upon the industry method of fault detection, a working prototype is designed to handle initialization, data collection, vehicle state tracking, fault detection and communication. A method of decoding the broadcasted messages on the vehicle bus is presented and unsafe driver habits are detected using static limits. An analysis of the initial design’s performance revealed that the industry method of detecting faults fails to account for the vehicle’s speed and is unable to detect faults on all roadways. A framework for analyzing fault profiles at varying speeds is presented and yields the relationship between fault magnitude and speed. A method of detecting the type of road driven was developed to dynamically assign fault limits while the vehicle traveled on a highway, city street or in traffic. The improved design correctly detected faults along all types of roads and proved to greatly expand upon the current method of fault detection used by the automotive IoT industry today.

Page generated in 0.0472 seconds