• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 280
  • 85
  • 35
  • 23
  • 15
  • 11
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 597
  • 204
  • 139
  • 104
  • 90
  • 85
  • 83
  • 74
  • 66
  • 61
  • 57
  • 43
  • 42
  • 41
  • 39
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Embedded Sensing Textiles for Corrosion Detection

Chowdhury, Tonoy 08 1900 (has links)
Corrosion in underground and submerged steel pipes is a global problem. Coatings serve as an impermeable barrier or a sacrificial element to the transport of corrosive fluids. When this barrier fails, corrosion in the metal initiates. There is a critical need for sensors at the metal/coating interface as an early alert system. Current options utilize metal sensors, leading to accelerating corrosion. In this dissertation, a non-conductive sensor textile as a viable solution was investigated. For this purpose, non-woven zinc (II) oxide-polyvinylidene fluoride (ZnO-PVDF) nanocomposite fiber textiles were prepared in a range of weight fractions (1%, 3%, and 5% ZnO) and placed at the coating/steel interface. Electrochemical impedance spectroscopy (EIS) testing was performed during the immersion of the coated samples to validate the effectiveness of the sensor textile. In the second part of this dissertation, an accelerated thermal cyclic method has been applied to determine sensor's reliability in detecting corrosion under actual service condition. The results suggested that the coating is capable of detecting corrosion under harsh conditions. Moreover, the addition of ZnO decreases the error in sensor textile and improved coating's barrier property. In the next phase, experiments were conducted to detect the type of corrosion (pitting or uniform) underneath the protective coating as it has profound effect on overall performance and durability of the steel pipe. The data suggested that the pitting corrosion drew a lot of current, hence its resistance was significantly low which was tacked by the sensor accurately whereas the uniformly corroded specimens showed almost identical results which portrayed the sensor's ability to detect pitting corrosion.
182

Nanofiber Network Composite Membranes for Proton Exchange Membrane Fuel Cells

Choi, Jonghyun 19 October 2010 (has links)
No description available.
183

Solutions of Potential Fields Using Flexible Finite Element Methods with Applications in Flow through Porous Media and Electrospinning

Li, Yalong 19 December 2017 (has links)
No description available.
184

Fabrication and Development of a PCL Electrospun Fiber - Keratin Aerogel Scaffold to Mimic Bruch’s Membrane for the Study of Age-related Macular Degeneration

Zeng, Ziqian 11 August 2017 (has links)
No description available.
185

Exploring Interfaces of Nanofiber NetworksFunctioning as Hierarchical Additives in PolymerNanocomposites

Alexander, Symone L. M. 31 August 2018 (has links)
No description available.
186

Water-Diesel Secondary Dispersion Separation Using Superhydrophobic Tubes of Nanofibers

Viswanadam, Goutham 28 August 2013 (has links)
No description available.
187

Electrospun PLLA Nanofiber Coating of Scaffolds for Applications in Bone Tissue Engineering

McClellan, Phillip Eugene January 2015 (has links)
No description available.
188

MULTIFUNCTIONAL SCAFFOLDS FOR DRUG-DELIVERY THERAPIES

Borges, Thiago FCC 27 January 2016 (has links)
No description available.
189

Comparison of Electrospun and Solvent Cast PLA/PVA Inserts as Potential Ocular DrugDelivery Vehicles

Bhattarai, Rajan Sharma, Bhattarai January 2016 (has links)
No description available.
190

Electrospun polycaprolactone scaffolds under strain and their application in cartilage tissue engineering

Nam, Jin 22 September 2006 (has links)
No description available.

Page generated in 0.0147 seconds