• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 277
  • 58
  • 40
  • 37
  • 13
  • 10
  • 10
  • 6
  • 6
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 567
  • 92
  • 56
  • 49
  • 41
  • 39
  • 39
  • 39
  • 38
  • 37
  • 37
  • 36
  • 31
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Modeling Of Dust Loaded Electrical Characteristics And Collection Efficiency Of Industrial Electrostatic Precipitators

Jayan, M V 07 1900 (has links)
With the increase in population and industrial growth, the need for power has increased manifold. A major share of India’s power generation is coal-based generation. Thermal power generation through coal combustion produces minute particles of ash that causes serious environmental problems. Most of the thermal power stations in India use bituminous coal and produce large quantities of fly ash. Fly ash is produced primarily by thermal power plants and, to a lesser extent, by cement and steel plants and railways. This poses problems in the form of land use, health hazards, and environmental dangers. Today the fly ash from thermal power plants is utilized to make cement. Cement industry needs fly ash with more fine particles. If these fine particles (of diameter in micro-meter range) are left out to atmosphere, it will be easily breathed into lungs, creating health hazard to human as well as animal life. If properly collected, it forms a valuable by product. Hence collecting fly ash is important to reduce pollution and also to increase revenue. Even though there are many devices like cyclones, fabric filters etc. the Electrostatic Precipitator (ESP) is the most efficient device to capture the fly ash. It is at this juncture a need for such a simple ESP model was felt to facilitate prediction of the V-I characteristics of dust loaded precipitators, be it cement dust or fly ash. Given the fact that 99% of Indian ESPs are operated under DC energization and most of them are running inefficiently due to lack of proper diagnostic tools and also due to lack of interest to invest on an ESP. In such circumstances, the free availability of a simple model that combines the V-I curves with collection efficiency serves to improve the ESP performance in our Indian industries. In an ESP Voltage-Current (V-I) characteristics are used to diagnose any electrical problems occurring in it. Mathematical model of V-I characteristics under clean air and dust laden conditions will be helpful in diagnosing the ESP problems as well as in designing the ESP. The model will also indirectly reflect upon the collection efficiency of the ESP. The collection efficiency should be as high as possible not only to prevent pollution but also to collect maximum fly ash which is a valuable by-product. The modeling of collection efficiency will help the industries to design a new precipitator as well as to improve the performance the collection efficiency to meet the changing restrictions set by the government to reduce pollution. In this thesis a mathematical model of ESP based on Finite Difference Method is developed. The modeling is done in three sections. 1. Simulation of clean air V-I characteristics. 2. Simulation of dust laden V-I characteristics. 3. Simulation of collection efficiency. Simulation of clean air V-I characteristics is done by iteratively solving the Poisson’s equation and current continuity equation, using FDM in one quarter region of the ESP. Just by introducing the effect of particle charge into this solution the dust laden V-I characteristics are simulated. Finally, the collection efficiency is calculated using average charge density at the plates obtained from the above solution. The developed model is validated at first against published experimental and simulated data and then, with the data obtained through conduction of experiments, by the author, on commercial precipitators situated at a thermal power station and a cement plant, in India. The thesis discusses in detail these theoretical and experimental studies.
32

Food coating application in: electrostatic atomization, non-electrostatic coating and electrostatic powder coating

Abu-ali, Jareer 29 September 2004 (has links)
No description available.
33

Fast and accurate macromolecular solvation energy and force computations

Zhao, Wenqi 27 May 2010 (has links)
This thesis reports a comprehensive study of the electrostatic solvation energy computation for macromolecules. In the molecular dynamics (MD) simulations it is important to be able to compute the free energy of the system accurately and efficiently. The solvation energy which is dominated by the electrostatics plays a significant role in the dynamics of macromolecules in solution. The standard way of computing the electrostatic solvation energy is to solve the Poisson-Boltzmann (PB) equations. However, due to the large size of the system, the computation cost of solving the PB equation becomes a bottleneck even for the continuum implicit solvent. The alternative method is the newly developed generalized Born (GB) method which gives a good approximation to the PB calculation if the Born radii are properly computed. The computation of the Born radii is the core computation in the GB method and is laborious. In this thesis we present a novel error-bounded fast surface GB approach which significantly improves the traditional surface GB approaches. An analytic algebraic spline model is built for the geometric model of the molecular surfaces which allows one to do the accurate computation on a coarse mesh. Based on the surface GB theory, we develop an algorithm that computes the Born radii by using the fast summation algorithm at a complexity nearly linear in terms of the number of atoms of the molecule and the number of elements on the mesh of the molecular surface. The algorithm is also extended to the electrostatic forces calculations. Finally we propose a hierarchical coarse grained (CG) model aiming at reducing the number of atoms in a macromolecule while still being able to reproduce the geometry as well as the electrostatic interactions of the atomic model. / text
34

Enzyme immobilisation on colloidal liquid aphrons (CLAs) and the development of a continuous membrane bioreactor

Lamb, Stephen Brian January 1999 (has links)
No description available.
35

Surface modification of hydrophobic drugs by adsorption of hydrophilic polymers

Nguyen, Hanh January 1999 (has links)
No description available.
36

A model of ozone generation in positive polarity electrostatic precipitators

Krakowiecki, Joseph Martin January 2011 (has links)
Digitized by Kansas Correctional Industries
37

Charged particle beam modulation using an electrostatic lens system

Foley, John Edward, 1940- January 1966 (has links)
No description available.
38

The design and operation of a gridded electrostatic energy analyzer for low density plasmas

Dunham, Mark Edward January 1979 (has links)
No description available.
39

Florida land-pebble phosphorite : the mineralogy and an evaluation of electrostatic beneficiation

Caines, Gary Lee 12 1900 (has links)
No description available.
40

The sieving electrostatic precipitator

Haynes, Nicholas. January 2004 (has links)
Thesis (M.S.)--Ohio University, August, 2004. / Title from PDF t.p. Includes bibliographical references (leaves 81-82).

Page generated in 0.02 seconds