521 |
Formation of Composite Islet Grafts : A novel strategy to promote islet survival and revascularizationJohansson, Ulrika January 2009 (has links)
The islets of Langerhans are small and delicate spheroid organs scattered in the pancreas responsible for insulin production. Transplantation of isolated islets is a beneficial therapy for patients with a severe form of type 1 diabetes. The islets, which normally are richly vascularized in the pancreas, are completely disconnected from the vascular support by the enzymatic digestion during the isolation procedure. Islet viability is affected throughout all steps in this process, from donor death and isolation of islets to culturing and the transplantation process itself. In this thesis a novel strategy to promote islet survival and to re-establish islet vasculature is presented. We show endogenous expression of 51 different genes related to inflammation in cultured islets. Among these genes high expression of MCP-1, MIF, VEGF, thymosin b-10 and IL-8, IL-1β, IL-5R-a, IFN-γ antagonist were found in all donors during the 5- and the 2-day cultures, respectively. Protein expression of these genes can stimulate inflammatory immune responses but also promote tissue repair by attracting curative cells such as endothelial cells (EC) leading to re-establishment of the vasculature. We have established a novel technique by formation of composite islets using EC and mesenchymal stem cells (MSC). EC adhered on the surface of the islets and created a potential blood tolerant surface. The EC-islets showed a degree of protection from the detrimental effects of instant blood-mediated inflammatory reaction (IBMIR) with the major components of IBMIR being decreased in in vitro assays. We combined MSC to the EC-islets with success. The MSC were found to have proliferative effect on EC and the combination of these two cell types on the islets further increased the EC covered surface compared to EC-islets. The EC-MSC-islets in co-culture formed vessel-like structures both into the islets and out to the surrounding matrix. The MSC enhanced the exogenous EC to form vessel-like network in the EC-MSC-islets indicating vascular support by the MSC. The novel strategy and conditions presented herein could alleviate problems related to survival of the islets by promoting revascularization. This would open up a new era in islet transplantation and allow more patients to benefit from this therapy. / Clinical immunology, islet group
|
522 |
The Roles of Growth Factor Interactions and Mechanical Tension in AngiogenesisPetersson, Ludvig January 2010 (has links)
Angiogenesis, the formation of new blood vessels from preexisting ones through creation of new vessel branch points by sprouting or vessel splitting, is an important part of tissue growth in both physiological processes like wound healing and pathological conditions such as cancer. Growth factors like VEGF-A, FGF-2 and PDGF-BB are involved in both types of angiogenesis. Screening for genes regulated by VEGF-A stimulation in endothelial cells revealed up regulation of the endothelial cell specific glycoprotein endocan. Endocan itself did not stimulate angiogenesis. VEGF was a specific inducer since FGF-2, PDGF-BB, HGF and EGF did not alter expression. The signaling molecule PI3K was a negative regulator of endocan expression. Endocan was expressed in tumor cells and vessels, suggesting that although endocan did not directly regulate angiogenesis it can serve as a marker for angiogenic tumors. In two models of wound healing angiogenesis, the chick extra-embryonal CAM assay and the mouse cornea assay, we observed that blood vessels grew into avascular areas as functional mural cell covered loops by elongation of preexisting vessels. Loop formation was simultaneous with contraction of the avascular matrix mediated by proto/myofibroblasts. Reducing the contractibility of the stroma reduced vessel ingrowth, showing that contraction was necessary for mediating and directing growth of the vascular loops. These findings suggest a model for biomechanical regulation of vascularization that is complementary to sprouting angiogenesis which is guided by gradients of growth factors. In defining the role of growth factors, in the CAM assay, we found that FGF-2 and PDGF-BB induced vessel ingrowth, while VEGF-A, EGF and HGF did not. TGF-beta reduced the effect of FGF-2. By use of specific receptor kinase inhibitors we found an absolute requirement VEGF- and PDGF-receptor activity for vascularization while FGF- and TGF-beta-receptor function was dispensable. This suggests that functional VEGF- and PDGF-receptors are needed for vessel elongation.
|
523 |
Attachment of macromolecular heparin conjugate to gelatin scaffolds improves endothelial cell infiltrationLeijon, Jonas, Carlsson, Fredrik, Brännström, Johan, Sanchez, Javier, Larsson, Rolf, Nilsson, Bo, Magnusson, Peetra, Rosenquist, Magnus January 2013 (has links)
Long-term survival of implanted cells requires oxygen and nutrients, the need for which is met by vasculari- zation of the implant. The use of scaffolds with surface-attached heparin as anchoring points for angiogenic growth factors has been reported to improve this process. We examined the potential role of surface modification of gelatin scaffolds in promoting endothelial cell infiltration by using a unique macromolecular conjugate of heparin as a coating. Compared to other heparin coatings, this surface modification provides flexible heparin chains, representing a new concept in heparin conjugation. In vitro cell infiltration of scaffolds was assessed using a three-dimensional model in which the novel heparin surface, without growth factors, showed a 2.5-fold increase in the number of infiltrating endothelial cells when compared to control scaffolds. No additional improvement was achieved by adding growth factors (vascular endothelial growth factor and/or fibroblast growth factor-2) to the scaffold. In vivo experiments confirmed these results and also showed that the addition of angiogenic growth factors did not significantly increase the endothelial cell infiltration but increased the number of inflammatory cells in the implanted scaffolds. The endothelial cell-stimulating ability of the heparin surface alone, combined with its growth factor-binding capacity, renders it an interesting candidate surface treatment to create a prevascularized site prepared for implantation of cells and tissues, in particular those sensitive to inflammation but in need of supportive revascularization, such as pancreatic islets of Langerhans. / <p>De två sista författarna delar sistaförfattarskapet.</p>
|
524 |
Characterization of a Degradable Polar Hydrophobic Ionic Polyurethane Using a Monocyte/Endothelial Cell Co-culture (in vitro) and a Subcutaneous Implant Mouse Model (in vivo)McDonald, Sarah M. 10 February 2011 (has links)
A degradable/polar/hydrophobic/ionic (D-PHI) polyurethane with properties intended to promote tissue regeneration in a small diameter peripheral artery vascular graft was evaluated for cell biocompatibility and growth. Films were cast in polypropylene 96 well plates for monocyte/endothelial cell (EC) co-culture in vitro studies and porous scaffold discs were implanted in an in vivo subcutaneous mouse model. After 7 days in culture the co-culture demonstrated cell adhesion and growth, low esterase activity (a measure of degradative potential and cell activation), no detectable release of pro-inflammatory cytokine (tumour necrosis factor -α) but measurable anti-inflammatory interleukin (IL)-10. The EC and the co-culture expressed the EC biomarker CD31, whereas the monocyte monoculture did not.
Cytokine array analysis of the in vivo characterization of D-PH supported an anti-inflammatory phenotype of cells at the site of the implant. Levels of IL-6 significantly decreased over time while IL-10 was significantly higher at 6 weeks post implant. TNF-α levels did not change significantly from 24 hours onwards, however the trend was towards lesser amounts following the initial time point. Histological analysis of the explanted scaffolds showed excellent tissue ingrowth and vascularization. A live/dead stain showed that the cells infiltrating the scaffolds were viable. Both the in vitro and in vivo results of this thesis indicate that D-PHI is a good candidate material for tissue engineering a peripheral artery vascular graft.
|
525 |
Circulating Progenitor Cell Therapeutic Potential Impaired by Endothelial Dysfunction and Rescued by a Collagen MatrixMarier, Jenelle 26 July 2012 (has links)
Angiogenic cell therapy is currently being developed as a treatment for coronary artery disease (CAD); however, endothelial dysfunction (ED), commonly found in patients with CAD, impairs the ability for revascularization to occur. We hypothesized that culture on a collagen matrix will improve survival and function of circulating progenitor cells (CPCs) isolated from a mouse model of ED. Overall, ED decreased the expression of endothelial markers in CPCs and impaired their function, compared to normal mice. Culture of CPCs from ED mice on collagen was able to increase cell marker expression, and improve migration and adhesion potential, compared to CPCs on fibronectin. Nitric oxide production was reduced for CPCs on collagen for the ED group; however, CPCs on collagen had better viability under conditions of serum deprivation and hypoxia, compared to fibronectin. This study suggests that a collagen matrix may improve the function of therapeutic CPCs that have been exposed to ED.
|
526 |
Cardiovascular effects of environmental tobacco smoke and benzo[a]pyrene exposure in ratsGentner, Nicole Joy 08 April 2010
Smoking and environmental tobacco smoke (ETS) exposure are major risk factors for cardiovascular disease (CVD), although the exact components and pathophysiological mechanisms responsible for this association remain unclear. Polycyclic aromatic hydrocarbons (PAHs), including benzo[a]pyrene (BaP), are ubiquitous environmental contaminants that form during organic material combustion and are thus found in cigarette smoke, vehicle exhaust particles, and air pollution. We hypothesize that PAHs are key agents responsible for mediating the cigarette smoke effects in the cardiovascular system, including increased oxidative stress, inflammation, and arterial stiffness.<p>
Arterial stiffness is a powerful, independent predictor of cardiovascular risk and is regulated, in part, by vasoactive mediators derived from the endothelium. The first objective of this project was to determine whether pulse wave dP/dt collected from radiotelemetry-implanted rats is a reliable indicator of changes in arterial stiffness following administration of vasoactive drugs or acute ETS exposure. Anaesthetized rats were administered a single dose of saline (vehicle control), acetylcholine, norepinephrine, and N(G)-nitro-L-arginine methyl ester (L-NAME) via the tail vein, allowing a washout period between injections. Acetylcholine decreased and norepinephrine increased dP/dt compared to saline vehicle. Injection of the nitric oxide (NO) synthase inhibitor L-NAME decreased plasma nitrate/nitrite (NOx), but transiently increased dP/dt. For the ETS experiment, rats were exposed for one hour to sham, low dose ETS, or high dose ETS. Exposure to ETS did not significantly alter dP/dt or plasma endothelin-1 (ET-1) levels, but increased plasma NOx levels at the high ETS exposure and increased plasma nitrotyrosine levels in both ETS groups. In conclusion, acute changes in NO production via acetylcholine or L-NAME alter the arterial pulse wave dP/dt consistently with the predicted changes in arterial stiffness. Although acute ETS appears to biologically inactivate NO, a concomitant increase in NO production at the high ETS exposure may explain why ETS did not acutely alter dP/dt.<p>
The second objective of this project was to compare the effects of subchronic ETS and BaP exposure on circadian blood pressure patterns, arterial stiffness, and possible sources of oxidative stress in radiotelemetry-implanted rats. Pulse wave dP/dt was used as an indicator of arterial stiffness, and was compared to both structural (wall thickness) and functional (NO production and bioactivity, ET-1 levels) features of the arterial wall. In addition, histology of lung, heart, and liver were examined as well as pulmonary and hepatic detoxifying enzyme activity (cytochrome P450 specifically CYP1A1). Daily ETS exposure for 28 days altered the circadian pattern of heart rate and blood pressure in rats, with a loss in the normal dipping pattern of blood pressure during sleep. Subchronic ETS exposure also increased dP/dt in the absence of any structural modifications in the arterial wall. Although NO production and ET-1 levels were not altered by ETS, there was increased biological inactivation of NO via peroxynitrite production (as indicated by increased plasma nitrotyrosine levels). Thus, vascular stiffness and failure of blood pressure to dip precede structural changes in rats exposed to ETS for 28 days. Exposure to ETS also caused increased number of lung neutrophils as well as increased CYP1A1 activity in lung microsomes.<p>
Since ETS-induced increases in arterial stiffness occurred as early as day 7, radiotelemetry-implanted rats were exposed daily to intranasal BaP for 7 days. Similar to ETS, BaP exposure altered circadian blood pressure patterns and reduced blood pressure dipping during sleep. Thus, in support of part of our hypothesis, the PAH component of cigarette smoke may be responsible for the ETS-induced increase in blood pressure and the loss of dipping pattern during sleep. Increased neutrophil recruitment was observed in the lungs of both ETS- and BaP-exposed rats, suggesting that lung inflammatory reactions may be involved in the disruption of circadian blood pressure rhythms. Unlike ETS however, BaP exposure did not significantly alter pulse wave dP/dt, endothelial function, or lung CYP1A1 activity. Thus, contrary to our hypothesis, the reduction in NO bioactivity and increased arterial stiffness caused by ETS cannot be explained by BaP at the dose and length of the exposure in the current study. Production of reactive metabolites in the lung following ETS exposure may be responsible, at least in part, for the increases in oxidative stress in the vasculature, leading to reduced NO bioactivity and increased arterial stiffness. Oxidative stress caused by BaP exposure may have been insufficient to reduce NO bioactivity in the peripheral vasculature. Therefore arterial stiffness was not increased and factors other than NO may be responsible for the increase in blood pressure observed with ETS and BaP exposure.
|
527 |
CLCA : chloride channel or modulator?Loewen, Matthew Eric 14 April 2004
A CLCA protein (CL for chloride channel and CA for calcium) cloned from porcine ileum was expressed and characterized. The regulatory behavior, inhibitor sensitivity, and functional properties of chloride conductance associated with the expression of pCLCA1 cDNA were investigated in non-epithelial NIH/3T3 fibroblasts and in an epithelial Caco-2 cell line. These properties were also investigated in freshly isolated retinal pigment epithelial (RPE) cells and in primary cultures of these cells which express an endogenous cCLCA1. In NIH/3T3 fibroblasts, the chloride efflux induced by pCLCA1 was directly activated by calcium. A and C kinase agonists were without effect. The electrogenic nature of chloride efflux was confirmed by detection of outwardly rectified chloride currents. Selected anion channel blockers inhibited both the pCLCA1 agonist-induced current and chloride efflux. The inhibitors also reduced Ussing chamber short circuit current and chloride efflux from primary RPE cultures. However, these same agents did not inhibit chloride efflux in fibroblasts expressing the cystic fibrosis transmembrane regulator (CFTR) conductive chloride channel. The expression of pCLCA1 increased cAMP/A kinase-dependent chloride ion release from fibroblasts and Caco-2 cells expressing CFTR. These pleiotropic effects of CLCA protein expression suggested that the protein may regulate the activity of chloride conductance, rather than functioning as a primary ion transporter. This putative regulatory behavior was further investigated in Caco-2 cells. The rate of 36Cl efflux and the amplitude of currents in patch clamp studies after activation of A kinase or intracellular Ca2+ mobilization was significantly increased in freshly passaged Caco-2 cells expressing pCLCA1. However, 36Cl efflux and short circuit Ussing chamber studies in polarized Caco-2 cells provided evidence that both endogenous and pCLCA1-dependent Ca2+-sensitive chloride conductance were lost from 14 day post-passage cells. cAMP-dependent chloride conductance continued to be modulated by pCLCA1 expression in differentiated 14 day post-passage Caco-2 cells, demonstrating the retention of pCLCA1 effects in these mature cells. We conclude that pCLCA1 expression enhances the sensitivity of endogenous chloride channels to both natural agonists, Ca2+and cAMP, but that it lacks inherent Ca2+-dependent chloride channel activity.
|
528 |
Development of an Endothelial Cell Niche in Three-dimensional HydrogelsAizawa, Yukie 20 August 2012 (has links)
Three-dimensional (3D) tissue models have significantly improved our understanding of structure/function relationships and promise to lead to new advances in regenerative medicine. However, despite the expanding diversity of 3D tissue fabrication methods, in vitro approaches for functional assessments have been relatively limited. Herein, we describe the guidance of primary endothelial cells (ECs) in an agarose hydrogel scaffold that is chemically patterned with an immobilized concentration gradient of vascular endothelial growth factor 165 (VEGF165) using multiphoton laser patterning of VEGF165. This is the first demonstration of this patterning technology to immobilize proteins; and the first demonstration of immobilized VEGF165 to guide endothelial cell growth and differentiation in 3D environments. It is particularly compelling that this 3D hydrogels provide an excellent biomimetic environment for stem cell niche, thereby offering a new approach to study stem cell biology. In this thesis, we focused on the retinal stem cell niche, investigating cellular interactions between retinal stem and progenitor cells (RSPCs) and endothelial cells (ECs). By using this 3D in vitro model, we demonstrated the synergistic interactions between RSPCs and ECs wherein RSPCs migrated into 3D gels only in the presence of ECs and RSPCs stabilized EC tubular-like formations. Moreover, we characterized the contact-mediated effects of ECs on RSPC fate in terms of proliferation and differentiation.
|
529 |
Assessment of Endothelial Function in Humans and the Endothelial-protective Effects of 3-hydroxy-3-methylglutaryl coenzyme A Reductase InhibitorsLiuni, Andrew 31 August 2012 (has links)
The endothelium plays an essential role in the regulation of vascular homeostasis and a state of endothelial dysfunction, which develops in the presence of cardiovascular risk factors, may contribute to the development and progression of cardiovascular disease. As such, the measurement of endothelial function, beyond being an experimental tool, may serve as an important tool to complement current risk assessment algorithms in the identification of high-risk patients. Flow-mediated dilation (FMD) is a non-invasive measure of peripheral conduit artery endothelial function that holds great promise. Presently, FMD suffers from methodological heterogeneity and a poor understanding of the various biological components involved in eliciting the dilatory response to a given shear stimulus. We compared both traditional and alternative methods of arterial diameter characterization with regards to their repeatability, nitric oxide-dependency, and their sensitivity in distinguishing between normal and dysfunctional endothelial responses. Our findings emphasize the importance of continuous arterial diameter measurement and suggest that the time to peak FMD is not a useful adjunctive measure of the FMD response.
Given that endothelial dysfunction may be of clinical importance, strategies to correct it or prevent it from occurring may be of benefit. The 3-hydroxy-3-methylglutaryl coenzyme A inhibitors are agents that have demonstrated marked cholesterol-independent, endothelial-protective effects. We investigated the ability of rosuvastatin and atorvastatin to protect against endothelial dysfunction associated with ischemia and reperfusion (IR) injury, and chronic nitrate therapy. Using the FMD technique, we demonstrated, for the first time in humans, that acute rosuvastatin administration protects against IR-induced conduit artery endothelial dysfunction. Additionally, we demonstrated that this effect likely occurred by a cyclooxygenase-2-dependent mechanism, which may provide mechanistic insight into the observed cardio-toxicity with cyclooxygenase-2 inhibitors. In contrast, we observed that this endothelial-protective effect was lost upon sustained rosuvastatin administration, which may have important implications regarding the generation of sustained cardioprotective phenotypes. Finally, we demonstrated that atorvastatin co-administration prevented the development of tolerance and endothelial dysfunction associated with continuous transdermal nitroglycerin therapy in humans, likely through an antioxidant mechanism. Future studies are needed in disease patients to determine whether the concept of nitrate tolerance needs reconsideration in the presence of vascular-protective agents.
|
530 |
Angiopoietin-1 and -2 in Infectious Diseases associated with Endothelial Cell DysfunctionPage, Andrea Vaughn 21 March 2012 (has links)
Normal endothelial cell function is controlled in part by a tightly regulated balance between angiopoietin-1 and -2 (Ang-1 and Ang-2). Angiopoietin dysregulation (decreased Ang-1 and increased Ang-2) leads to an activated endothelium that is contractile, adhesive, and prothrombotic. Since an activated endothelial phenotype is seen in invasive group A streptococcal infection, E. coli O157:H7-induced hemolytic-uremic syndrome (HUS), and sepsis, we hypothesized that angiopoietin dysregulation might also be present in these syndromes, and to that end, measured angiopoietin levels in several well-characterized patient cohorts. Decreased Ang-1 and/or increased Ang-2 were found in all three syndromes, and were predictive of clinical outcome in HUS and sepsis. The prognostic utility of Ang-2 in sepsis was further enhanced by combination with biomarkers of inflammation. Angiopoietin dysregulation may therefore represent a shared final common pathway to endothelial activation as well as a clinically useful prognostic biomarker in streptococcal toxic shock, HUS, and sepsis.
|
Page generated in 0.0238 seconds