• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 159
  • 29
  • 18
  • 9
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • Tagged with
  • 321
  • 321
  • 88
  • 74
  • 62
  • 59
  • 55
  • 53
  • 51
  • 50
  • 34
  • 29
  • 26
  • 25
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

¹⁷O Solid-state NMR spectroscopy of functional oxides for energy conversion

Halat, David Michael January 2018 (has links)
The main aim of this thesis is the development of $^{17}$O solid-state nuclear magnetic resonance (NMR) spectroscopic techniques to study the local structure and ion dynamics of functional oxide materials for applications in energy conversion, in particular as electrodes and electrolytes in solid oxide fuel cells (SOFCs). Broadly, the work comprises two related areas: (1) application of a combined experimental and computational methodology to enable the first $^{17}$O solid-state NMR studies of paramagnetic oxides, in particular a class of perovskite-derived structures used as mixed ionic-electronic conductors (MIECs) for SOFC cathodes, and (2) further uses of multinuclear variable-temperature NMR spectroscopy, with emphasis on $^{17}$O NMR results, to elucidate mechanistic details of oxide-ion motion and sublattice exchange in a novel family of promising SOFC electrolyte materials based on $\delta$-Bi$_{2}$O$_{3}$. In the first section, $^{17}$O magic-angle spinning (MAS) NMR spectra of the paramagnetic MIEC, La$_{2}$NiO$_{4+\delta}$, are presented and rationalized with the aid of periodic DFT calculations. Advanced NMR pulse programming and quadrupolar filtering techniques are coupled to extract high-resolution spectra. In particular, these data reveal local structural distortions in La$_{2}$NiO$_{4+\delta}$ that arise from incorporation of interstitial oxide defects. Moreover, variable-temperature spectra indicate the onset of oxide-ion motion involving the interstitials at 130 °C, which is linked to an orthorhombic$-$tetragonal phase transition. By analyzing the ion dynamics on the spectral timescale, specific motional mechanisms are elucidated that prove relevant to understanding the functionality and conductivity of this phase. Next, a similar methodology is applied to the Sr-doped analogues, La$_{2-x}$Sr$_{x}$NiO$_{4+\delta}$, in an exploration of the defect chemistry and electronic structure of these phases (0 $\leq {x} \leq$ 1). By following the doping-induced evolution of spectral features assigned to interstitial and equatorial oxygen environments, changes in the ionic and electronic conductivity, respectively, are rationalized. This approach has been extended to the acquisition and assignment of $^{17}$O NMR spectra of isostructural Sm$_{2-x}$Sr$_{x}$NiO$_{4+\delta}$ and Pr$_{2-x}$Sr$_{x}$NiO$_{4+\delta}$ phases, promising SOFC cathode materials that exhibit paramagnetism on the A site (A = Sm, Pr). The final section details the characterization of oxide-ion motion in the fluorite-type phases Bi$_{1-x}$V$_{x}$O$_{1.5+x}$ and Bi$_{1-x}$P$_{x}$O$_{1.5+x}$ ($x$ = 0.087 and 0.148) developed as SOFC electrolytes. Variable-temperature NMR experiments between room temperature and 923 K reveal two distinct mechanisms. For the V-doped phases, an oxide-ion conduction mechanism is observed that involves oxygen exchange between the Bi-O sublattice and rapidly rotating VO$_{4}$ tetrahedral units. The more poorly conducting P-doped phase exhibits only vacancy conduction with no evidence of sublattice exchange, a result ascribed to the differing propensities of the dopants to undergo variable oxygen coordination. These initial insights suggest chemical design rules to improve the next generation of oxide-ion conducting materials.
92

Estudo da viabilidade de implantação de plantas para conversão de energia térmica do oceano (OTEC) no Brasil

Neves, Marcus Godolphim de Castro [UNESP] 27 February 2015 (has links) (PDF)
Made available in DSpace on 2015-07-13T12:10:16Z (GMT). No. of bitstreams: 0 Previous issue date: 2015-02-27. Added 1 bitstream(s) on 2015-07-13T12:25:31Z : No. of bitstreams: 1 000836695.pdf: 1571978 bytes, checksum: 4e307c80099ecf2308070178e4aa39ab (MD5) / Atualmente, a busca por novas fontes de energias renováveis tem sido o motivo de pesquisas e investimentos, sendo que a possibilidade de exploração da energia dos oceanos pode ser uma interessante alternativa. Um desses processos é baseado na extração da energia térmica solar acumulada na superfície dos oceanos. Parte dessa energia pode ser transformada em eletricidade e em vários outros subprodutos por meio de um processo conhecido como Conversão da Energia Térmica dos Oceanos (OTEC), que utiliza a água fria obtida a partir de uma profundidade de 1.000 m. As usinas OTEC podem operar em sistemas térmicos aberto, fechado ou híbrido, sendo que, para operar de forma adequada, o local de instalação da usina OTEC deve ter águas com temperatura média da superfície maior que 24 °C. O Brasil possui várias regiões que atendem esta condição sendo, portanto, um dos países com boa capacidade de instalação de usina OTEC para ajudar a suprir sua demanda energética. Este trabalho apresenta o estudo de viabilidade termodinâmica, termoeconômica e econômica de instalação de uma usina OTEC no Brasil por meio de simulações numéricas de seis casos de ciclos fechados, sendo cinco deles com um estágio (três com coletores solares e dois sem); e um caso com dois estágios, sem coletor solar. Os resultados mostraram que a planta com dois estágios não se mostrou viável. No entanto, observou-se que uma usina com ciclo fechado, com um estágio, é capaz de produzir de 13 a 19 MW, dependendo do caso, com custo entre R$ 0,55 (com coletor) e R$ 0,65 (sem coletor) por kW. Esse valor é inferior ao custo da energia produzida por motores estacionários a Diesel, de modo que essa tecnologia pode ser uma alternativa viável e sustentável para substituição dessa forma de geração de eletricidade no nordeste do Brasil, sendo também capaz de produzir água dessalinizada e sal / The search for new sources of clean renewable energy has been the subject of current research and investment, and the possible exploration of oceanic processes may be an interesting alternative. One of these processes is based on extraction of the solar thermal energy accumulated in the ocean upper layer. A fraction of this energy can be converted into electricity and various byproducts by means of a conversion process known simply as Ocean Thermal Energy Conversion (OTEC), which uses the cold water gotten from a depth of 1,000 m. OTEC plants operate in three distinct thermal cycles: open, closed and hybrid. To operate in an adequate form, the local of installation of an OTEC plant must have the sea's average surface temperature greater than 24 oC. Brazil has several offshore regions with these conditions, being one of the countries with good capacity to install OTEC plants to help to supply the electrical and energy demands. This work presents the study of thermodymanic, thermoeconomic and economic feasibility to install an OTEC plant in Brazil through numerical simulation of six cases of closed thermal cycles of an OTEC plant, being five of them with one stage (three with and two without solar boosters); one case with two stages and none solar booster. The results have shown that the two-stage plant has not been feseable. However, the one-stage closed cycle plants are able to produce between 13 to 19 MW, depending on the case considered, with cost between R$ 0,55 (with solar booster) and R$ 0,65 (without solar booster) per kW. These values is lower than the energy cost produced by Diesel stationary engines, so that this technology may be a feseable and sustainable alternative to replace this kind of power generation in Brazilian Northeast region, being able to produce fresh water and salt too
93

Modelling and development of fuel cell off grid power converter system

Raji, Atanda Kamoru January 2008 (has links)
Thesis submitted in partial fulfilment of the requirements for the degree Magister Technologiae: Electrical Engineering in the Faculty of Engineering at the Cape Peninsula University of Technology 2008 / Fuel cell technology is an emerging technology that provides a highly efficient, quiet operation, reliable, and environmentally friendly energy conversion system for stationary, automobile (vehicle), and portable applications. An electrochemical process combines hydrogen fuel and oxygen from air to produce water, and in the process it produces electricity and heat. Fuel cell stationary applications which include residential, office buildings, hospitals, hotels, airports and others have received greater attention for their ability to utilize the heat generated for space and water heating. This combined heat and power (CHP) process increases the energy conversion efficiency greatly which in turn save cost of energy usage. Different power converter topologies for fuel cell systems residential applications are presented in this thesis for efficiency, cost, component count, input ripple current minimization technique, reliability for comparison analysis. The commercial feasibility of fuel cells rests on the cost of the fuel cell system and operating efficiency and fuel cost. The proposed power converter topology consists of two front end DC-DC converters. The first front-end DC-Dc converter is tightly controlled while the second is a full bridge four interleaved DC-DC converters. Advantages of the proposed topology are reduced input ripple current, high efficiency, low maintenance cost, smaller size, modularity, redundancy. Design overview as well as simulation results are presented. Fuel cell simulation test results, including transient response are displayed and analyzed. The concept of interleaving of multiple units of the De-De converter is proposed. Interleaving enables paralleling multiple units of the converters to achieve a high combined power. This results in using semiconductor power devices of lower current rating, lowering sizes of input and output capacitors and reducing the output ripples. Simulations results are presented that verify the concept of interleaving. Preliminary work to implement interleaving is presented, and future work is recommended.
94

Estudo da viabilidade de implantação de plantas para conversão de energia térmica do oceano (OTEC) no Brasil /

Neves, Marcus Godolphim de Castro. January 2015 (has links)
Orientador: Ricardo Alan Verdú Ramos / Co-orientador: Cassio Roberto de Macedo Maia / Banca: Emanuel Rocha Woiski / Banca: Mauro Conti Pereira / Resumo: Atualmente, a busca por novas fontes de energias renováveis tem sido o motivo de pesquisas e investimentos, sendo que a possibilidade de exploração da energia dos oceanos pode ser uma interessante alternativa. Um desses processos é baseado na extração da energia térmica solar acumulada na superfície dos oceanos. Parte dessa energia pode ser transformada em eletricidade e em vários outros subprodutos por meio de um processo conhecido como Conversão da Energia Térmica dos Oceanos (OTEC), que utiliza a água fria obtida a partir de uma profundidade de 1.000 m. As usinas OTEC podem operar em sistemas térmicos aberto, fechado ou híbrido, sendo que, para operar de forma adequada, o local de instalação da usina OTEC deve ter águas com temperatura média da superfície maior que 24 °C. O Brasil possui várias regiões que atendem esta condição sendo, portanto, um dos países com boa capacidade de instalação de usina OTEC para ajudar a suprir sua demanda energética. Este trabalho apresenta o estudo de viabilidade termodinâmica, termoeconômica e econômica de instalação de uma usina OTEC no Brasil por meio de simulações numéricas de seis casos de ciclos fechados, sendo cinco deles com um estágio (três com coletores solares e dois sem); e um caso com dois estágios, sem coletor solar. Os resultados mostraram que a planta com dois estágios não se mostrou viável. No entanto, observou-se que uma usina com ciclo fechado, com um estágio, é capaz de produzir de 13 a 19 MW, dependendo do caso, com custo entre R$ 0,55 (com coletor) e R$ 0,65 (sem coletor) por kW. Esse valor é inferior ao custo da energia produzida por motores estacionários a Diesel, de modo que essa tecnologia pode ser uma alternativa viável e sustentável para substituição dessa forma de geração de eletricidade no nordeste do Brasil, sendo também capaz de produzir água dessalinizada e sal / Abstract: The search for new sources of clean renewable energy has been the subject of current research and investment, and the possible exploration of oceanic processes may be an interesting alternative. One of these processes is based on extraction of the solar thermal energy accumulated in the ocean upper layer. A fraction of this energy can be converted into electricity and various byproducts by means of a conversion process known simply as Ocean Thermal Energy Conversion (OTEC), which uses the cold water gotten from a depth of 1,000 m. OTEC plants operate in three distinct thermal cycles: open, closed and hybrid. To operate in an adequate form, the local of installation of an OTEC plant must have the sea's average surface temperature greater than 24 oC. Brazil has several offshore regions with these conditions, being one of the countries with good capacity to install OTEC plants to help to supply the electrical and energy demands. This work presents the study of thermodymanic, thermoeconomic and economic feasibility to install an OTEC plant in Brazil through numerical simulation of six cases of closed thermal cycles of an OTEC plant, being five of them with one stage (three with and two without solar boosters); one case with two stages and none solar booster. The results have shown that the two-stage plant has not been feseable. However, the one-stage closed cycle plants are able to produce between 13 to 19 MW, depending on the case considered, with cost between R$ 0,55 (with solar booster) and R$ 0,65 (without solar booster) per kW. These values is lower than the energy cost produced by Diesel stationary engines, so that this technology may be a feseable and sustainable alternative to replace this kind of power generation in Brazilian Northeast region, being able to produce fresh water and salt too / Mestre
95

Investigating the integration of power line communications and low-voltage solar photovoltaic systems

Ndjiongue, Alain Richard 09 December 2013 (has links)
M.Ing. (Electrical Engineering Science) / One of the challenges of modern technology is remote control in real-time. Wireless technologies are used to control solar systems connected or not connected to the grid. Nevertheless wireless communications present some defects when they are facing basements of buildings and thick walls. To overcome that weakness, wire technologies seem to be the solution. The use of power line communications (PLC) technology presents a financial advantage, given the fact that PLC uses power wire to transmit data. PLC did an interesting leap forward in the last few years, and this drives researchers to carry out research in that field of Electrical Engineering. The advantages offered by PLC cannot be over-emphasized, but neither should the inherent problems affecting its commercial take-off be underestimated. This work creates a background study for experimental measurement and eventual implementations on PLC. A 2FSK modulation was implemented at CENELEC B standards, and the carrier signal was sent through a low wattage solar microinverter. The inverter was built in compliance with the IEEE 1547 standard. Two different coupling circuits were also built as well as the transceiver. The entire system was fed by a 250 W- 18 V monocrystalline solar panel. This investigation presents many options to integrate a communication system in a solar system. The case study has shown that a message sent through an H-bridge inverter is related to many parameters such as the modulation scheme, the coding techniques, the type of control and the DC link voltage. The result presents a very weak probability, which implies that the other options should be investigated.
96

Development of a bench scale single batch biomass to liquid fuel facility

Zhang, Yusheng January 2014 (has links)
The research described in this dissertation was motivated by the global demand for energy that is not dependent on coal, oil, natural gas and other non-renewable fossil fuels. The technology used in this project is related to the use of biomass to produce a viable alternative to conventional sources of fuel. A bench scale biomass to liquid (BTL) facility was built and tested. This produced results confirming the feasibility of the BTL process. The findings of the pilot study outlined in this dissertation justified the conclusion that the next step will be to expand the capacity and productivity of the BTL pilot plant to an industrial scale. Biomass comes from a variety of renewable sources that are readily available. In this case, the material used in the fixed bed biomass gasification facility to generate wood gas was agricultural and forestry waste, such as straw and wood chips. The gasifier had the capacity to produce up to 10 cubic metres/hr of gas with a carbon monoxide and hydrogen content of between 20–40% by volume, when it was operated at ambient pressure and with air as the oxidizer. The gas, produced at a temperature above 700º C, was cooled in a quench/water scrubber in order to remove most of the mechanical impurities (tars and water-soluble inorganic particles), condensed and dried with corn cobs before being compressed in cylinders at over 100 bar (g) for use in the Fischer-Tropsch Synthesis (FTS). The syngas was subjected further to a series of refining processes which included removal of sulphur and oxygen. The sulphur removal technology chosen entailed applying modified activated carbon to adsorb H2S with the help of hydrolysis in order to convert organic sulphur impurities into H2S which reduced the sulphur content of the gas to less than 5 ppbv. Supported cobalt catalyst (100 grams), were loaded into a single-tube fixed bed FT reactor with an inner diameter of 50 mm. The reactor was fitted with a heating jacket through which, heated oil ran to cool the reactor during a normal reaction occurring at < 250 ºC, while nitrogen was used in the heating jacket during reduction, which occurred at temperatures up ~ 350 ºC. The FTS reaction was carried out at different pressures and temperatures. Liquid and wax products were produced from the facility. The properties of the liquid and solid hydrocarbons produced were found to be the same as FT products from other feed stocks, such as natural gas and coal.
97

Measurement and modeling of in-cylinder heat transfer with inflow-produced turbulence

Cantelmi, Frank Joseph 10 July 2009 (has links)
In-cylinder heat transfer is important to the performance of many reciprocating energy conversion machines. It is particularly important to the performance of Stirling machines. For cylinder spaces without inflow, heat transfer and related power losses can be predicted using an analytical model which neglects turbulence. In actual engine cylinders, where significant turbulence levels can be generated by high velocity inflow, a model which neglects inflow may not be adequate. Several models have been proposed for in-cylinder heat transfer with inflow-produced turbulence. Existing models are based on the assumption that turbulence levels remain constant over the cycle. In the current work, experiments were performed to measure the effects of inflow produced turbulence on in-cylinder heat transfer. Experiments were conducted for two different inflow configurations. These experiments have shown that turbulence levels can change significantly over the course of the cycle, invalidating one of the major assumptions common to existing models. In response to the experimental results, a new model was proposed to predict the effects of variations in the turbulence level throughout the cycle. Based on the I-D energy equation, it extends an existing heat transfer model by replacing the laminar thermal conductivity with a time varying effective turbulent thermal conductivity. The varying component of the effective thermal conductivity is assumed to be small relative to the mean component, allowing the use of a perturbation method. Two Nusselt numbers were formulated based on the model results. The first was a complex valued Nusselt number. Previous work had demonstrated that a constant complex Nusselt number could effectively predict heat transfer throughout the cycle in cylinder spaces without inflow. For cylinders with inflow, the current model predicts a complex Nusselt number that varies over the cycle. The second Nusselt number was formed using the steady components of the second order temperature profiles. F or this steady Nusselt number, including the effects of thermal conductivity variations throughout the cycle resulted in a heat transfer coefficient that was larger than that predicted using a mean effective conductivity alone. / Master of Science
98

MultiScale Data-Driven Modeling of Foundational Combustion Reaction Systems

LaGrotta, Carly Elisa January 2023 (has links)
As the world becomes increasingly interconnected, modernized, and populated, the demand for energy across the globe is growing at an unprecedented rate. This growth in energy demand has an undeniable impact on increasingly pressing social issues including, climate change, energy security, energy economy, atmospheric chemistry, and air quality. Finding a way to address these issues on a rapid timescale is more important than ever. A common thread running through all of these challenges is that they can be partially or fully addressed with the development of new chemical energy conversion technologies which, in turn, rely on a comprehensive understanding of gas phase kinetics. Examples of promising technologies include renewable fuels (i.e. methanol and hydrogen) and/or reliable, efficient, and clean engines that can accommodate renewable fuels. The development of such technology would enable the use of renewable fuels, thereby reducing emissions and cutting down on harmful byproducts released into the atmosphere. Computational simulations have become a powerful approach for developing and advancing energy technology in a safe, efficient, and effective manner. These computational approaches model reacting flows and are generally known as computational fluid dynamics (CFD). However, in order for these CFD simulations to work effectively and make meaningful predictions, the sub-models used to describe the underlying chemistry (gas phase kinetics) must be accurate; information about underlying chemistry is provided to computational simulations via a chemical kinetic model/mechanism, which describes the chemical reactions that drive the fuel oxidation within the system being simulated. Regarding combustion specifically, the reliability of predictive simulations depends on the availability of accurate data and models not only for chemical kinetics, but also thermochemistry and transport. Further complicating the problem, combustion and chemical kinetics provide a unique challenge in regard to obtaining accurate predictive models; underlying chemical kinetics mechanisms may require unprecedented accuracy to obtain truly predictive combustion modeling. For example, it has been shown in computational simulations that uncertainties in any of several kinetic parameters can yield uncertainties large enough in the physical system being modeled to cause system failure, thereby reducing the effectiveness of computational design approaches that could accelerate technology development. Hence, a strong need exists to develop a method that significantly reduces uncertainties in chemical kinetics parameters to meet the accuracy demands of advanced computational design tools. To this end, it is useful to draw on inspiration from existing methods in the field of combustion and chemical kinetics as well as tangential fields; the most compelling inspiration can be found in the field of thermochemistry in the form of the Active Thermochemical Tables (ATcT). This work presents a novel, analogous approach for chemical kinetics called MultiScale Informatics, or MSI for short. The MSI approach identifies optimized values and quantified uncertainties for a set of molecular parameters (within theoretical kinetics calculations), rate parameters, and physical model parameters (within simulations of experimental observables) as informed by data from various sources and scales. The overarching objectives of this work are to demonstrate how the MSI approach can be used to determine physically meaningful optimized kinetics parameters and quantified uncertainties, unravel webs of interconnected rate constants in complex reaction systems, resolve discrepancies among data sets, and touch on key elements of MSI’s implementation. To demonstrate how these objectives are met, the MSI approach is used to explore the kinetics of three reaction sub-systems. The studies of these sub-systems will demonstrate some key elements of this approach including: the importance of raw data for quantifying the information content of experimental data, the utility of theoretical kinetics calculations for constraining experimental interpretations and providing an independent data source, and the subtleties of target data selection for avoiding unphysical parameter adjustments to match data affected by structural uncertainties. For the first sub-system explored (CH₃ + HO₂), the MSI approach is applied to carefully selected (mostly raw) experimental data and yields an opposite temperature dependence for the channel-specific CH3 + HO2 rate constants as compared to a previous rate-parameter optimization. While both optimization studies use the same theoretical calculations to constrain model parameters, only the present optimization, which incorporates theory directly into the model structure, yields results that are consistent with theoretical calculations. For the second sub-system explored (HO₂ + HO₂), the MSI approach is applied to carefully selected experimental data, leveraging the hydrogen reaction system from the first study with the addition of high level theory calculations for the reaction of HO₂ + HO₂. Recent high-level theoretical calculations predict a mild temperature dependence for HO₂ + HO₂, which is inconsistent with state-of-the-art experimental determinations that upheld the stronger temperature dependence observed in early experiments. Via MSI analysis of the theoretical and experimental data, alternative interpretations of the raw experimental data that uses HO₂ + HO₂ rate constants nearly identical to theoretical predictions are identified – implying that the theoretical and experimental data are actually consistent, at least when considering the raw data from experiments. Similar analyses of typical signals from low-temperature experiments indicate that an HOOOOH intermediate – identified by recent theory but absent from earlier interpretations – yields modest effects that are smaller than, but may have contributed to, the scatter in data among different experiments. More generally, the findings demonstrate that modern chemical theories and experiments have progressed to a point where meaningful comparison requires joint consideration of their data simultaneously. The third sub-system explored builds a larger web of interconnected reaction systems in an attempt to achieve data redundancy and demonstrate how interpreting coupled reaction systems is necessary to accurately determine many key rate constants. The ability of the MSI method to interpret raw experimental data and untangle rate constant reaction systems is demonstrated. The study also reinforces how implementing theory into the model structure is imperative to yield results that are consistent with experimental data as well as theoretical calculations and achieve physically realistic branching ratios. Finally, this work will present how results from all the studied reaction systems culminate into a complex hydrogen/syngas combustion model validated against data from various combustion experiments.
99

Solar energy conversion by photosynthetic photoelectrochemical cell /

Pan, Rong Long January 1982 (has links)
No description available.
100

The Synthesis and Photophysical Properties of New Polymetallic Complexes Designed for Use in Photoinitiated Electron Collection

Jones, Sumner Weston Jr. 28 April 1998 (has links)
The goal of this research was to develop stereochemically defined multimetallic systems for use as light absorbers and electron donor / light absorber dyads in photoinitiated electron transfer and electron collection. The basis for the stereochemical control was provided by the symmetric bridging ligands 2,3,5,6-tetra(pyridyl)pyrazine (tpp) and 2,2'-bipyrimidine (bpm). The symmetric bidentate ligand 4N-perylene was designed and the majority of the synthesis was completed. The bimetallic complexes [(tpy)M(tpp)Ru(LLL)]²⁺, where M = Ru or Os and LLL = Cl₃, (CH₃CN)₃, tpp, or (dpq)Cl, and the model monometallic complexes [(tpy)M(tpp)]²⁺, where M = Ru or Os, and [(tpy)Ru(CH₃CN)₃]²⁺ were synthesized and characterized using electrochemistry, UV-vis spectroscopy, and UV-vis spectroelectrochemistry. The bimetallic complexes were investigated as potential light-absorber / electron-donor complexes to be used in larger supramolecular devices for photoinitiated electron collection and electron transfer. The electrochemistry showed that the relative energy of the metal orbitals is suitable for the metal in the (tpy)M(tpp) coordination environment to act as an electron donor. These bimetallic complexes possess extremely complicated UV-vis spectroscopy due to the number of possible transitions. The assignment of the UV-vis spectroscopy and the electrochemistry of these complexes was greatly facilitated by the UV-vis spectroelectrochemistry. The metal-to-metal charge transfer spectra of the mixed-valence species of the bimetallic complexes were obtained using NIR spectroelectrochemistry and indicate a significant degree of metal-metal communication through the bridging tpp. The bimetallic complexes [(tpy)Ru(tpp)Ru(tpy)]⁴⁺, [(tpy)Ru(tpp)Ru(tpp)]⁴⁺ [(tpy)Os(tpp)Ru(tpp)]⁴⁺, and [(tpy)Ru(tpp)Ru(CH₃CN)₃]⁴⁺ were found to have emission lifetimes on the order of 100 ns. The complexes [(bpy)₂Ru(bpm)]²⁺, [(bpy)₂Ru(bpm)Ru(bpy)₂]⁴⁺, [(bpm)₂IrCl₂]⁺, and {[(bpy)₂Ru(bpm)]₂IrCl₂}⁵⁺ were synthesized and characterized using electrochemistry, UV-vis spectroscopy, and UV-vis spectroelectrochemistry. The complex {[(bpy)₂Ru(bpm)]₂IrCl₂}⁵⁺ is a LA-EC-LA device for photoinitiated electron collection. The UV-vis spectroelectrochemistry of these complexes facilitated the assignment of the UV-vis spectroscopy as well as the electrochemistry. The UV-vis spectrum of the electrochemically generated two electron reduced form of {[(bpy)₂Ru(bpm)]₂IrCl₂}⁵⁺ was obtained. This spectrum is critical in the understanding of future studies of the photochemically generated two electron reduced species. The symmetric, planar, bidentate bridging ligand 4N-perylene was designed. This ligand would eliminate some of the isomers associated with multimetallic complexes bridged by unsymmetric bidentate bridging ligands. The large π system of 4N-perylene would likely result in a low energy π* orbital compared to dpp, dpq, or bpm. The ligand 4N-perylene would hold bridged metals at a greater distance than 2,2'-bipyrimidine and should facilitate the formation of multimetallic complexes. The synthesis of 1,8-dichloro-2,7-naphthyridine has been completed. 1,8-dichloro-2,7-naphthyridine is a possible reactant in the homo-coupling reaction of a substituted 2,7-naphthyridine to form 4N-perylene. The stereochemically defined molecular systems developed in this work show great promise for use in larger supramolecular complexes designed for photoinitiated electron transfer and electron collection. / Ph. D.

Page generated in 0.0286 seconds