131 |
Self-Reacting Point Absorber Wave Energy ConvertersBeatty, Scott J. 31 August 2015 (has links)
A comprehensive set of experimental and numerical comparisons of the performance of two self-reacting point absorber wave energy converter (WEC) designs is undertaken in typical operating conditions. The designs are either currently, or have recently been, under development for commercialization. The experiments consist of a series of 1:25 scale model tests to quantify hydrodynamic parameters, motion dynamics, and power conversion. Each WEC is given a uniquely optimized power take off damping level. For hydrodynamic parameter identification, an optimization based method to simultaneously extract Morison drag and Coulomb friction coefficients from decay tests of under-damped, floating bodies is developed. The physical model features a re-configurable reacting body shape, a feedback controlled power take-off, a heave motion constraint system, and a mooring apparatus. A theoretical upper bound on power conversion for single body WECs, called Budal's upper bound, is extended to two body WECs.
The numerical analyses are done in three phases. In the first phase, the WECs are constrained to heave motion and subjected to monochromatic waves. Quantitative comparisons are made of the WEC designs in terms of heave motion dynamics and power conversion with reference to theoretical upper bounds. Design implications of a reactive power take-off control scheme and relative motion constraints on the wave energy converters are investigated using an experimentally validated, frequency domain, numerical dynamics model. In the second phase, the WECs are constrained to heave motion and subjected to panchromatic waves. A time domain numerical model, validated by the experimental results, is used to compare the WECs in terms of power matrices, capture width matrices, and mean annual energy production. Results indicate that the second WEC design can convert 30% more energy, on average, than the first design given the conditions at a representative location near the West coast of Vancouver Island, British Columbia, Canada. In the last phase, the WECs are held with three legged, horizontal, moorings and subjected to monochromatic waves. Numerical simulations using panelized body geometries for calculations of Froude-Krylov, Morison drag, and hydrostatic loads are developed in ProteusDS. The simulation results---mechanical power, mooring forces, and dynamic motions---are compared to model test results. The moored WEC designs exhibit power conversion consistent with heave motion constrained results in some wave conditions. However, large pitch and roll motions severely degrade the power conversion of each WEC at wave frequencies equal to twice the pitch natural frequency. Using simulations, vertical stabilizing strakes, attached to the reacting bodies of the WECs are shown to increase the average power conversion up to 190% compared to the average power conversion of the WECs without strakes. / Graduate / scottb@uvic.ca
|
132 |
Superadiabatic combustion in counter-flow heat exchangersSchoegl, Ingmar Michael 22 March 2011 (has links)
Syngas, a combustible gaseous mixture of hydrogen, carbon monoxide, and other species, is a promising fuel for efficient energy conversion technologies. Syngas is produced by breaking down a primary fuel into a hydrogen-rich mixture in a process called fuel reforming. The motivation for the utilization of syngas rather than the primary fuel is that syngas can be used in energy conversion technologies that offer higher conversion efficiencies, e.g. gas turbines and fuel cells. One approach for syngas production is partial oxidation, which is an oxygen starved combustion process that does not require a catalyst. Efficient conversion to syngas occurs at high levels of oxygen depletion, resulting in mixtures that are not flammable in conventional combustion applications. In non-catalytic partial oxidation, internal heat recirculation is used to increase the local reaction temperatures by transferring heat from the product stream to pre-heat the fuel/air mixture before reactions occur, thus increasing reaction rates and allowing for combustion outside the conventional flammability limits. As peak temperatures lie above the adiabatic equilibrium temperature predicted by thermodynamic calculations, the combustion regime used for non-catalytic fuel reforming is referred to as 'superadiabatic'. Counter-flow heat exchange is an effective way to transfer heat between adjacent channels and is used for a novel, heat-recirculating fuel reformer design. An analytical study predicts that combustion zone locations inside adjacent flow channels adjust to operating conditions, thus stabilizing the process for independent variations of flow velocities and mixture compositions. In experiments, a reactor prototype with four channels with alternating flow directions is developed and investigated. Tests with methane/air and propane/air mixtures validate the operating principle, and measurements of the resulting syngas compositions verify the feasibility of the concept for practical fuel-reformer applications. Results from a two-dimensional numerical study with detailed reaction chemistry are consistent with experimental observations. Details of the reaction zone reveal that reactions are initiated in the vicinity of the channel walls, resulting in "tulip"-shaped reaction layers. Overall, results confirm the viability of the non-catalytic reactor design for fuel reforming applications. / text
|
133 |
A design methodology for the supply of subterranean water through the use of wind energyMarais, Brett Richard January 2005 (has links)
Thesis (M.Tech.: Civil Engineering)-Dept. of of Civil Engineering and Surveying, Durban Institute of Technology, 2005
xii, 89 leaves : ill. ; 30 cm / The Reconstruction and Development Programme adopted by the Government of National Unity is more than a list of the services required to improve the quality of life of the majority of South Africans. It is not just a call for South Africans to unite to build a country free of poverty and misery; it is a programme designed to achieve this objective in an integrated and principled manner.
Based on the strategic objectives, as highlighted in the White Paper on Water Supply and Sanitation Policy, with regard to alleviating the chronic potable water shortages in South Africa, this thesis investigates a design methodology to supply potable water through the use of wind energy. The design focuses on small rural off-grid developments where grid electricity either has not or will not reach, and where renewable energy is the only viable option.
This thesis provides an overview of wind energy and presents the fundamentals of wind power calculations. It also formulates an overview of the historic and present situation with regards to potable water supply, and reflects on the need for urgent intervention.
The feasibility of using wind energy to supply potable water to rural communities in South Africa is explored in a case study. The various problem areas are identified and examined and a wide range of possible solutions are recommended. A final flow chart for the system design is proposed, thus ensuring comprehensive design methodology from which future design of similar systems can be based.
|
134 |
The development and assessment of a direct energy calculator for use in sugarcane production.Boote, Darran N. 31 October 2014 (has links)
The rising cost of energy coupled with an increasing awareness of Greenhouse Gas (GHG) emissions has led to a concerted effort to reduce fossil fuel Energy Use (EU) in all sectors. Sugarcane production in South Africa is dependent on fossil fuel to provide a source of energy for production. To remain commercially and environmentally sustainable, measures need to be taken to reduce EU and increase EU efficiencies of on-farm operations. The first step toward realising this is to identify and quantify energy inputs. Following on from this, total GHG emissions, also known as carbon footprint, can be estimated.
The primary objective of this research is to develop an energy calculator to estimate EU in sugarcane production in South Africa. The results generated by the calculator highlight areas of high energy intensity and low energy efficiencies at three different levels of detail. Based on these results, changes in management practices and technological improvements can be made to reduce EU and carbon footprint. Case studies were used to test the functionality of the calculator. Results from the case studies show that, in irrigated sugarcane production, the harvest and transport process together with irrigation account for a majority of the total on-farm EU. For one of the case studies, an estimated 20 % saving in the total on-farm EU was identified and can be achieved if appropriate technology is adopted in irrigation practices. Less significant energy savings were realised when in-field tractor operations were optimised for best tractor-implement matching.
It is envisaged that the energy calculator will help farmers minimise on-farm EU and subsequently reduce input costs and carbon footprint. It will also provide a valuable tool for researchers to benchmark and profile EU in sugarcane production in South Africa. Research focussed on the sustainable production of sugar, from the agricultural to milling phase is of high priority at present. The quantification of on-farm EU in sugarcane production will form a critical component of such research. / M.Sc.Eng. University of KwaZulu-Natal, Pietermaritzburg 2014.
|
135 |
Underwater radiated noise from Point Absorbing Wave Energy Converters : Noise Characteristics and Possible Environmental EffectsHaikonen, Kalle January 2014 (has links)
The conversion of wave energy into electrical energy has the potential to become a clean and sustainable form of renewable energy conversion. However, like all forms of energy conversion it will inevitably have an impact on the marine environment, although not in the form of emissions of hazardous substances (gases, oils or chemicals associated with anticorrosion). Possible environmental issues associated with wave energy conversion include electromagnetic fields, alteration of sedimentation and hydrologic regimes and underwater radiated noise. Underwater noise has the potential to propagate over long distances and thus have the potential to disturb marine organisms far away from the noise source. There is great variation in the ability to perceive sound between marine organisms, one sound that is clearly audible to one species can be completely inaudible to another. Thus, to be able to determine potential environmental impact from WECs associated with underwater noise, the noise radiated from the WECs must be known. This thesis presents results from studies on the underwater radiated noise from four different full-scale WECs in the Lysekil Wave Power Project. Hydrophones were used to measure the underwater radiated noise from operating point absorbing linear WECs. The main purpose was to study the radiated noise from the operating WECs with emphasis on characteristics such as spectrum levels, Sound Pressure Level (SPL), noise duration and repetition rate. This to be able to determine the origin of the noise and if possible, implement design changes to minimize radiated noise. The results identified two main operational noises (transients with the bulk of the energy in frequencies <1 kHz). The SPL of the radiated noise fluctuated significantly, depending on wave height. Broadband SPLrms of the measurements ranged between ~110 dB and ~140 dB re 1 µPa and SPLpeak of specific noises ranges between ~140 and ~180 dB re µPa. Audibility was estimated range from 1km to 15 km depending critically on species and on assumptions of propagation loss. The noise is not expected to have any negative effects on behaviour or mask any signals, unless in the vicinity (<150m) of the WECs in significant wave heights. No physical damage, even in close vicinity are expected on either fish or marine mammals. Having the aim to have as little impact on the environment a possible, these studies are important. This way precautions can be implemented early in the technical development of this kind of renewable energy converters. The benefits from the WECs the Lysekil wave power project are believed to outweigh possible environmental impacts due to underwater radiated noise. / <p>Vid avhandlingens tryckläggning upptäcktes inte att tidpunkt för disputation var fel.</p>
|
136 |
Design of a robust speed and position sensorless decoupled P-Q controlled doubly-fed induction generator for variable-speed wind energy applicationsGogas, Kyriakos. January 2007 (has links)
Wind energy is a relatively young but rapidly expanding industry. In order for wind generation to be cost effective, it must produce energy at a minimum cost per dollar of investment. Performance characteristics such as power output versus wind speed must be optimized in order to compete with other energy sources. Also, if the utility uses wind power for a part of its generation, the output power of these turbines must have the same high quality and reliability when it enters the utility grid. The ability to vary operating speed is important in wind generation because it allows for an optimization of the transfer of power from the wind to the turbine shaft. Doubly-fed induction generators (DFIG) are an interesting solution for variable-speed systems with limited variable speed range, and are typically used in wind energy conversion systems. / The objectives of this thesis are to implement a decoupled P-Q control of a DFIG that does not rely on mechanical sensors and to design a speed and position sensorless algorithm that is robust to variations of the values of the machine parameters. The sensorless DFIG control algorithm presented in this thesis is based on a modified phasedlock loop with an improved positioning algorithm. With the measured stator voltages, stator and rotor currents, the speed and position of the DFIG are estimated. The speed is estimated independent of machine parameters, which results in a significant improvement in speed control robustness to parameter variations. In addition, the algorithm avoids using differentiation, which significantly improves its immunity to noise and does not require the measurement of the rotor voltages. Also, it is shown that the positioning algorithm has an improved operation in generator mode. Although the accuracy of the positioning algorithm is depended on machine parameters; it is shown with the designed controller that the P-Q decoupled control is robust to changes of machine parameters. Theoretical and simulation results are validated on an experimental setup.
|
137 |
Enabling High Wind Penetration in Electrical GridsElnashar, Mohab January 2011 (has links)
Wind generation has become one of the most popular choices of technology for adding new generation capacity to power systems worldwide. Several factors have contributed to the increased integration of wind generation, including environmental concerns and the continual increase in fossil fuel prices. As well, recent regulations have moved toward limitations on greenhouse gases, especially in the European Union (EU). Similar laws are currently under consideration in the US and other parts of the world. Other factors have also promoted the use of wind energy, such as advances in manufacturing and control technology and the attractiveness of wind as a “green” source of energy.
The large-scale integration of wind power into an electricity system introduces planning and operational challenges because of the intermittent nature of wind speed and the difficulty involved in predicting it. For these reasons, wind energy is often considered an unreliable energy source. Additional problems are associated with the integration of large-scale wind farms into an electrical grid, among which wind power fluctuation is the most challenging. To maximize the penetration level of wind energy in a grid, a reliable technology must be developed in order to eliminate or at least decrease wind power fluctuation.
The primary goal of this thesis was to develop methods of maximizing the penetration level of wind energy conversion systems (WECSs) into a grid, which requires mitigating wind power fluctuation. A robust control technique has therefore been developed for mitigating wind power fluctuation. This control technique exploits historical environmental data collected over a number of years in order to evaluate the profile of the output power of a variety of wind energy conversion systems (WECSs). The developed control technique was applied to Types A and C WECSs modifying the pitch angle controller of Type A WECS and the back-to-back converter control of Type C WECS. The Attachment of a storage device to the WECSs after the control technique is applied was investigated from both an economic and a technical point of view. The optimum sizing and siting of the wind energy conversion system equipped with the proposed control technique was also studied.
This research is expected to contribute to the advancement of WECS technology by presenting a feasible solution to the problems associated with the integration of large-scale WECSs into electrical grids.
|
138 |
Chemical and structural modification of porous silicon for energy storage and conversionCorno, James A. 15 January 2008 (has links)
This thesis describes the fabrication and modification of porous silicon and titania structures for the purposes of energy storage and conversion. The first chapter provides the reader with background information on porous silicon, batteries, and photocatalysis. The second chapter describes porous silicon fabrication methods and the equipment used in these studies. The third and fourth chapters are journal articles which describe the results of efforts to produce a porous silicon electrode for lithium ion batteries. The fifth chapter is a journal article detailing the fabrication of a thin, free-standing porous silicon film which can be activated for possible photovoltaic and microreactor applications. The last chapter describes the formation of novel silver/silver oxide seed structures for titania photocatalyst nanostructures to be prepared for deposition on a porous silicon support interface.
|
139 |
Application of STATCOM for improved dynamic performance of wind farms in a power gridJayam Prabhakar, Aditya, January 2008 (has links) (PDF)
Thesis (M.S.)--Missouri University of Science and Technology, 2008. / Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed May 12, 2008) Includes bibliographical references (p. 64-66).
|
140 |
Time-fractional analysis of flow patterns during refrigerant condensationVan Rooyen, Eugene. January 2007 (has links)
Thesis (M. Eng.(Mechanical and Aeronautical Engineering))--Universiteit van Pretoria, 2007. / Abstract in English. Includes bibliographical references.
|
Page generated in 0.0656 seconds