• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Phase I/II Pilot Study of Intravesical Apaziquone (EO9) for Superficial Bladder Cancer

Puri, Rajiv, Palit, V., Loadman, Paul, Flannigan, G. Michael, Shah, T.K., Choudry, G.A., Basu, Saurajyoti, Double, John A., Lenaz, G., Chawla, S., Beer, M., Kalken, C.V., de Boer, R., Beijnen, J.H., Twelves, Christopher J., Phillips, Roger M. January 2006 (has links)
No / The quinone based bioreductive drug apaziquone (EO9) failed to demonstrate efficacy in previous phase II studies following intravenous administration. We determined the dose of apaziquone that can be safely administered intravesically and explored its activity for superficial bladder transitional cell carcinoma. Six patients with multifocal, Ta/T1 and G1/G2 transitional cell carcinoma of the bladder received escalating doses of apaziquone formulated as EOquin¿ (0.5 mg/40 ml up to 16 mg/40 ml) weekly for 6 weeks. A further 6 patients received weekly apaziquone at the highest nontoxic dose established. Pharmacokinetic parameters were determined in urine and blood, and the pharmacodynamic markers NQO1 (reduced nicotinamide adenine dinucleotide phosphate:quinone oxidoreductase-1) and glucose transporter 1 were also characterized. Efficacy was determined against a marker lesion. Local toxicity (grades 2 and 3 dysuria, and hematuria) was observed at doses of 8 mg/40 ml and above but 4 mg/40 ml was well tolerated with no systemic or local side effects. Apaziquone in urine increased linearly with the dose but no apaziquone was detected in plasma. In 8 of 12 patients complete macroscopic and histological disappearance of the marker lesion occurred. A correlation between response and NQO1 and/or glucose transporter 1 expression could not be established. Intravesical administration of 4 mg/40 ml apaziquone was well tolerated and had ablative activity against superficial bladder cancer marker lesions.
2

A novel strategy for NQO1 (NAD(P)H:quinone oxidoreductase, EC 1.6.99.2) mediated therapy of bladder cancer based on the pharmacological properties of EO9.

Choudry, Guzanfar A., Hamilton Stewart, P.A., Double, John A., Krul, M.R.L., Naylor, Brian, Flannigan, G. Michael, Shah, Tariq K., Phillips, Roger M. January 2001 (has links)
No / The indolequinone EO9 demonstrated good preclinical activity but failed to show clinical efficacy against a range of tumours following intravenous drug administration. A significant factor in EO9's failure in the clinic has been attributed to its rapid pharmacokinetic elimination resulting in poor drug delivery to tumours. Intravesical administration of EO9 would circumvent the problem of drug delivery to tumours and the principal objective of this study is to determine whether or not bladder tumours have elevated levels of the enzyme NQO1 (NAD(P)H:quinone oxidoreductase) which plays a key role in activating EO9 under aerobic conditions. Elevated NQO1 levels in human bladder tumour tissue exist in a subset of patients as measured by both immunohistochemical and enzymatic assays. In a panel of human tumour cell lines, EO9 is selectively toxic towards NQO1 rich cell lines under aerobic conditions and potency can be enhanced by reducing extracellular pH. These studies suggest that a subset of bladder cancer patients exist whose tumours possess the appropriate biochemical machinery required to activate EO9. Administration of EO9 in an acidic vehicle could be employed to reduce possible systemic toxicity as any drug absorbed into the blood stream would become relatively inactive due to an increase in pH.
3

Response of multiple recurrent TaT1 bladder cancer to intravesical apaziquone (EO9): Comparative analysis of tumour recurrence rates.

Jain, A., Phillips, Roger M., Scally, Andy J., Lenaz, G., Beer, M., Puri, Rajiv January 2009 (has links)
Objectives Previous studies have demonstrated that intravesical administration of apaziquone (EOquin) has ablative activity against superficial bladder cancer marker lesions with 8 out of 12 complete responses recorded. We present a comparison between the rates of tumor recurrence before and after treatment with apaziquone. Methods The rate of tumor recurrence after treatment with apaziquone was compared with each patient's historical record of recurrences obtained from a retrospective analysis of the patients' case notes. The time to each recurrence event before apaziquone treatment and the time to the first recurrence after apaziquone treatment were recorded, and the data were analyzed using a population-averaged linear regression model using Stata Release, version 9.2, software. Results Of the eight complete responses obtained in the Phase I study, tumor recurrence occurred in 4 patients and the remaining 4 patients remained disease free after a median follow-up of 31 months. The time to the first recurrence after apaziquone treatment was significantly longer (P <0.001) compared with the historical pattern and recurrence interval before apaziquone. Before apaziquone instillation, the mean ± SE recurrence rate and tumor rate per year was 1.5 ± 0.2 and 4.8 ± 1.2, respectively, and these decreased to 0.6 ± 0.25 and 1.5 ± 0.8, respectively, after apaziquone treatment (P <0.05). Conclusions The results of this study indicate that early recurrences after treatment with apaziquone are infrequent and the interval to recurrence is significantly greater compared with the historical recurrence times for these patients. Larger prospective randomised trials are warranted to confirm these results. Aapaziquone (EOquin, USAN, E09, 3-hydroxy-5-aziridinyl-1-methyl-2[indole-4,7-dione]¿prop-¿-en-¿-ol) belongs to a class of anticancer agents known as bioreductive drugs that require metabolism by cellular reductases to generate a cytotoxic species.1 Although it is chemically related to mitomycin C, apaziquone has a distinctly different mechanism of action and preclinical activity profile.1 and 2 The initial optimism generated by its preclinical activity profile rapidly evaporated after the demonstration that intravenously administered apaziquone was clinically inactive against a range of solid tumors in Phase II clinical trials.3 and 4 Several possible explanations were considered for its lack of efficacy, but poor drug delivery to the tumor because of the rapid pharmacokinetic elimination of apaziquone in conjunction with relatively poor penetration through avascular tissue was considered to be the principal reason.5 On the basis of the rationale that intravesical administration would circumvent the problem of drug delivery and any apaziquone absorbed into the blood stream would be rapidly cleared,6 a Phase I-II clinical pilot study of intravesical administration of apaziquone to superficial bladder tumors was established.7 The results of that trial demonstrated that intravesically administered apaziquone has ablative activity against superficial bladder transitional cell carcinoma (TCC) marker lesions.7 These results were confirmed and extended in a Phase II clinical trial of 47 patients with superficial bladder TCC, in which complete responses were obtained in 67% of patients.8 Because all the enrolled patients in the original trial7 had had multiple recurrences after previous intravesical chemotherapy and/or immunotherapy, the purpose of the present study was, first, to report the recurrences that occurred after apaziquone treatment and, second, to study the effect of apaziquone instillation on the recurrence rate by statistically comparing these results with the historical pattern of recurrences for each patient before treatment with apaziquone.

Page generated in 0.0161 seconds