1 |
Validation of the WAM-model over the Baltic SeaBerg, Caroline January 2008 (has links)
<p>In order to understand how waves influence the exchange of momentum, latent heat and other parameters, between the ocean surface and the atmosphere, one can use models. A coupling between a wave model and an atmospheric regional climate model, for the Baltic Sea, will be performed at the Meteorology Institute in Uppsala University. The wave model is a state of the art, third generation wave model called WAM.</p><p>The new version of the WAM model (cycle 4) needs to be validated. The aim of this thesis is to perform this validation and also to investigate what meteorological forcing one should use to achieve best results. Two different types of forcing are analyzed, ERA40 reanalysis and the RCA climate model. In order to do this, observations from six different buoys in the Baltic Sea will be compared with the model output from WAM. The parameters that will be compared in this study are significant wave height, direction and peak period.</p><p>A consistent phenomenon for all the buoys is a slightly overestimation by the model of what the rate of this increases with increasing wave height. If one compares the model output when WAM are forced with the RCA climate model and when it is forced with ERA40 reanalysis, the differences between them are notable but not large. ERA40 is slightly better.</p><p>Significant wave height is quite good and gives a reasonably result. Some buoys and periods are better and some are worse. There are some differences for the significant wave height between the east coast and the west coast of Sweden, when forcing the model with RCA. It is slightly better on the west coast. On the contrary, the results from ERA40 are very coherent. The quality of the hindcast for the direction and the peak period, in contrast to the significant wave height, is not that good. The results are not bad, but it only gives a rough picture of the sea state.</p>
|
2 |
Validation of the WAM-model over the Baltic SeaBerg, Caroline January 2008 (has links)
In order to understand how waves influence the exchange of momentum, latent heat and other parameters, between the ocean surface and the atmosphere, one can use models. A coupling between a wave model and an atmospheric regional climate model, for the Baltic Sea, will be performed at the Meteorology Institute in Uppsala University. The wave model is a state of the art, third generation wave model called WAM. The new version of the WAM model (cycle 4) needs to be validated. The aim of this thesis is to perform this validation and also to investigate what meteorological forcing one should use to achieve best results. Two different types of forcing are analyzed, ERA40 reanalysis and the RCA climate model. In order to do this, observations from six different buoys in the Baltic Sea will be compared with the model output from WAM. The parameters that will be compared in this study are significant wave height, direction and peak period. A consistent phenomenon for all the buoys is a slightly overestimation by the model of what the rate of this increases with increasing wave height. If one compares the model output when WAM are forced with the RCA climate model and when it is forced with ERA40 reanalysis, the differences between them are notable but not large. ERA40 is slightly better. Significant wave height is quite good and gives a reasonably result. Some buoys and periods are better and some are worse. There are some differences for the significant wave height between the east coast and the west coast of Sweden, when forcing the model with RCA. It is slightly better on the west coast. On the contrary, the results from ERA40 are very coherent. The quality of the hindcast for the direction and the peak period, in contrast to the significant wave height, is not that good. The results are not bad, but it only gives a rough picture of the sea state.
|
Page generated in 0.0218 seconds