• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3525
  • 2091
  • 555
  • 274
  • 273
  • 114
  • 111
  • 106
  • 75
  • 71
  • 36
  • 30
  • 30
  • 30
  • 30
  • Tagged with
  • 8610
  • 5259
  • 1955
  • 1467
  • 863
  • 669
  • 668
  • 615
  • 575
  • 566
  • 562
  • 467
  • 465
  • 453
  • 446
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Preferential Allelic Expression of Genetic Information on Human Chromosome 7

Katiraee, Layla 31 July 2008 (has links)
Genes are typically expressed in equal amounts from both parentally inherited chromosomes. However, recent studies have demonstrated that genes can be preferentially transcribed from a locus. Non-random preferential expression of alleles can occur in a parent-of-origin pattern, known as imprinting, where epigenetic factors regulate their transcription. Alternatively, it can occur in a haplotype-specific pattern, where cis-acting polymorphisms in regulatory regions are thought to underlie the phenomenon. Both forms of unequal allelic expression have been associated with human disease. Consequently, it is important to identify genes subject to unequal allelic expression and characterize mechanisms that regulate differential transcription. This thesis presents the results of a screen for unequal allelic expression where approximately 50 murine transcripts homologous to genes on human chromosome 7 were analyzed. Human chromosome 7 was selected due to its association with several human disorders that show parent-of-origin effects. The screen identified non-imprinted preferential allelic expression in numerous transcripts and demonstrated that such patterns can occur in tissue specific patterns. Paraoxonase-1 (Pon1), a gene implicated in arthrosclerosis, was identified as having a dynamic pattern of allelic expression which varies throughout embryonic development. This finding represents the first report of a developmentally regulated pattern of allelic variance. Carboxypeptidase-A4 (Cpa4) was identified as having a tissue-specific imprinted pattern of expression, where the maternal allele was preferentially expressed in all embryonic tissues, with the exception of the brain. The Krüppel-like factor 14 gene (Klf14), a novel imprinted transcript, was found to have ubiquitous maternal expression in all human and murine tissues analyzed. A differentially methylated region, generally associated with imprinted transcripts, was not found in the gene’s CpG island, nor was a differential pattern of histone modifications identified. However, it was determined that maternal methylation regulates the transcript. The data in this thesis contribute to our understanding of the numerous patterns of allelic expression that exist in nature and the diverse mechanisms that regulate them. Ultimately, quantitative analyses of allelic expression patterns and the identification of their underlying genomic DNA sequences will become standard protocol in all biomedical studies.
22

Die Einwirkung der Mundpartie auf den Gesichtsausdruck des Menschen und ihre Bedeutung für die Zahnheilkunde

Wiegandt, Karl. January 1933 (has links)
Thesis (Ph. D.)--Eberhard Karls-Universität, 1933.
23

Die Einwirkung der Mundpartie auf den Gesichtsausdruck des Menschen und ihre Bedeutung für die Zahnheilkunde

Wiegandt, Karl. January 1933 (has links)
Thesis (Ph. D.)--Eberhard Karls-Universität, 1933.
24

The expression of cellulomomas fimi cellulase genes in Brevibacterium lactofermentum and characterization of recombinant C. fimi B-glucosidase A from E coli

Paradis, François William François William January 1990 (has links)
In the first part of this thesis, I describe the expression of C. fimi cellulase genes in the closely related Brevibacterium lactofermentum by generating a shuttle vector able to replicate selectively in the latter and carrying full length cellulase-encoding genes. The expression of those genes apparently originated from some unpredicted regulatory sequences, possibly located within the vector itself. The enzymatic activity was mostly found in the culture medium in B. lactofermentum indicating that the organism secreted the enzymes. The putative C. fimi promoter sequences did not function in B. lactofermentum, making difficult the analysis of their roles in expression of C. fimi cellulase genes. In the second part of this thesis, I describe the characterization of a recombinant C. fimi exo-ϐ-1,4-glucosidase (CbgA) expressed in E. coli. The purified enzyme had a Mr of 183 kDa and hydrolysed various ϐ-glucosides with a preference for cello-oligosaccharides in the order C5>C4>C3>C2. The intact CbgA polypeptide was not required for enzymatic activity since removal of about 700 residues from the amino terminus did not reduce activity. The purified enzyme was used to raise polyclonal antibodies which in turn were used to identify the corresponding enzyme in C. fimi. During the fractionation of C. fimi ϐ-glucosidases, several enzymes hydrolyzing various ϐ-glucosides were isolated together with the native CbgA, which was present in the culture medium as part of a protein aggregate. Part of the nucleotide sequence of the 7.2 kb insert was determined. Alignments of the N-terminal amino acid sequences of the purified CbgA and truncated polypeptides with the partial nucleotide sequence of the cloned C. fimi DNA showed that precise excision was responsible for the appearance of a truncated form of CbgA. Alignment of the amino-terminal sequence of a CbgA:CexCBD fusion peptide indicated that the pre-mature CbgA starts with a putative leader sequence of 49 amino acids which is followed by a region rich in Pro and Ala residues. Two GTG translational initiation codons followed by sequences resemblingprokaryotic ribosome binding sites and separated by a large open reading frame were identified from data obtained after in vitro site-directed mutagenesis of the most upstream initiation codon suggesting that internal re-initiation may occur and that upstream regulatory sequences had not been isolated. / Medicine, Faculty of / Medical Genetics, Department of / Graduate
25

Gene expression in and development of trisomies of Drosophila melanogaster

Devlin, Robert Harry January 1984 (has links)
Drosophila melanoqaster individuals trisomic for an entire chromosome arm can survive to late stages of pupal development. To examine gene expression in these hyperploids, the levels of five enzymes whose structural genes are located on the left arm of chromosome two have been examined both in aneuploid and in diploid strains. Elevated levels of enzyme activity were observed in larvae possessing small segmental duplications for these genes. However, in 2L trisomies, the three distally mapping loci showed compensated levels of expression close to that observed in the diploid strains. Analysis of electrophoretic variants revealed that for one of these compensated loci all three alleles were expressed in trisomies. Two proximally located genes displayed dose-dependent levels of enzyme activity. For most genes, autosomal compensation appears to be very discrete: either the expression of the gene is repressed or it is not. To extend these observations, and to determine if autosomal compensation was peculiar to the left arm of chromosome two, trisomies for the X, for 2R, and for 3L also were examined. Compensating and non-compensating loci were also found on 3L, whereas all loci examined in X-chromosomal trisomies were dosage compensated. This suggests that X-chromosomal and autosomal trisomies are not necessarily analagous. Dosage compensation in X-chromosomal trisomies (metafemales) may occur exclusively or partially by the mechanism that operates between euploid males and females. However, some compensation in X trisomies may occur by regulatory controls distinct from male-female dosage compensation as indicated by the following results. The expression of LSP-1aT a gene that normally escapes complete dosage compensation in diploid males, was fully compensated in trisomic-X larvae. Possibly, compensation of this gene in these individuals was mediated by regulatory mechanisms other than those controlling male-female dosage compensation. As such, loci that normally do not reside on the X chromosome, but which have been transposed to this chromosome, might be expected to escape compensation in metafemales. This appears to be the case; an Adh gene that had been transposed from the second to the X chromosome was expressed at a similar level (per gene) in metafemales and females. In addition, a native X-chromosomal locus appeared to be compensated between males and females, but was not compensated in X-chromosomal trisomies. Thus, some X-linked loci escape regulation by dosage compensation in metafemales. It is possible that some of the regulatory systems operating in X-chromosomal and autosomal trisomies are analagous, and reflect a common form hyperploid compensation. The level at which compensation occured was investigated by measuring the quantities of RNA produced by several genes in whole-arm trisomies. For the heat-shock gene, hsp 85. compensation for protein levels appeared to be Post-transcriptionally regulated. However, measurements of RNA synthesis on salivary gland polytene chromosomes revealed that for most of the genes compensation was transcriptionally regulated. Dosage compensation on the autosomes probably reflects the existence of a system that normally operates in diploids to control gene expression by negative regulation. / Science, Faculty of / Zoology, Department of / Graduate
26

Identification of a Minimal Cis-element and Cognate Trans-factors Required for the Regulation of Rac2 Gene Expression during K562 Cell Differentiation

Muthukrishnan, Rajarajeswari 18 March 2009 (has links)
Indiana University-Purdue University, Indianapolis / This dissertation examines the molecular mechanisms regulating Rac2 gene expression during cell differentiation and identification of a minimal cis-element required for the induction of Rac2 gene expression during K562 cell differentiation. The Rho family GTPase Rac2 is expressed in hematopoietic cell lineages and is further up-regulated upon terminal myeloid cell differentiation. Rac2 plays an important role in many hematopoietic cellular functions, such as neutrophil chemotaxis, superoxide production, cytoskeletal reorganization, and stem cell adhesion. Despite the crucial role of Rac2 in blood cell function, little is known about the mechanisms of Rac2 gene regulation during blood cell differentiation. Previous studies from the Skalnik lab determined that a human Rac2 gene fragment containing the 1.6 kb upstream and 8 kb downstream sequence directs lineage-specific expression of Rac2 in transgenic mice. In addition, epigenetic modifications such as DNA methylation also play important roles in the lineage-specific expression of Rac2. The current study investigated the molecular mechanisms regulating human Rac2 gene expression during cell differentiation using chemically induced megakaryocytic differentiation of the human chronic myelogenous leukemia cell line K562 as the model system. Phorbol 12-myristate 13-acetate (PMA) stimulation of K562 cells resulted in increased Rac2 mRNA expression as analyzed by real time-polymerase chain reaction (RT-PCR). Luciferase reporter gene assays revealed that increased transcriptional activity of the Rac2 gene is mediated by the Rac2 promoter region. Nested 5’- deletions of the promoter region identified a critical regulatory region between -4223 bp and -4008 bp upstream of the transcription start site. Super shift and chromatin immunoprecipitation assays indicated binding by the transcription factor AP1 to three distinct binding sites within the 135 bp minimal regulatory region. PMA stimulation of K562 cells led to extensive changes in chromatin structure, including increased histone H3 acetylation, within the 135 bp Rac2 cis-element. These findings provide evidence for the interplay between epigenetic modifications, transcription factors and cis-acting regulatory elements within the Rac2 gene promoter region to regulate Rac2 expression during K562 cell differentiation.
27

Brief Affect Recognition Thresholds: A Systematic Evaluation of The Japanese and Caucasian Brief Affect Recognition Test

Chamberland, Justin 27 April 2023 (has links)
Micro-expressions are brief facial expressions of emotion (40 to 500 ms) that are posited to represent true reflections of an individual’s emotional state that have 'leaked’ through voluntary attempts to neutralize or mask the involuntary expression. As such, correct recognition can have important benefits. The Japanese and Caucasian Brief Affect Recognition Task (JACBART) has been proposed as the standardized measure of affect recognition capabilities with micro-expression durations (i.e., facial expressions lasting less than 500 ms). In this paradigm target expressions of emotion are briefly presented between two neutral expressions. However, limited research has explored the temporal thresholds and the various factors that may influence performance in a JACBART paradigm. In three studies, the current thesis sought to determine the effects of a forward mask with a variable duration (Study 1), the inclusion/exclusion of a ‘neutral’ response category (Study 2), and expressions portrayed at lower intensities (Study 3). Although a variable-duration forward mask was found to have little effect on performance, significant effects were observed for the inclusion of a ‘neutral’ response option and when reducing the expression intensity. In addition, a trend was observed across all three studies that demonstrated a recognition advantage for expressions of happiness and surprise. Performances for these two expressions exceeded the psychometric threshold with durations of as little as 5 to 10 ms, whereas presentation times as long as 113 ms were necessary to elicit above-threshold recognition rates with negative emotions (i.e., anger, disgust, fear, and sadness). Altogether, the current findings present some methodological considerations for studies interested in measuring brief affect recognition with a JACBART paradigm. More generally, they expand our understanding of how various relevant factors affect the speed at which facial expressions can be processed.
28

Sex- and tissue-specific expression of different members of the mouse major urinary protein multigene family

McIntosh, Iain January 1988 (has links)
No description available.
29

Development of a strategy for genetic transformation of plant mitochondria

Moore, Ian Robert January 1989 (has links)
No description available.
30

Gene structure and expression of human pro-alpha2(XI) collagen (col11A2) gene

呂志恆, Lui, Chi-hang, Vincent. January 1995 (has links)
published_or_final_version / Biochemistry / Doctoral / Doctor of Philosophy

Page generated in 0.0442 seconds