Spelling suggestions: "subject:"early direct injection"" "subject:"early direct fnjection""
1 |
Lagrangian CFD Modeling of Impinging Diesel Sprays for DI HCCIStrålin, Per January 2007 (has links)
The homogeneous charge compression ignition (HCCI) concept has been acknowledged as a potential combustion concept for engines, due to low NOx and soot emissions and high efficiency, especially at part-load. Early direct-injection (DI) during the compression stroke is an option when Diesel fuel is used in HCCI. This implies that the risk for wall impingement increases, due to the decreasing in-cylinder density. The fuel sprays has to be well dispersed in order to avoid wall impingement. Specially designed impinging nozzles providing a collision of the Diesel sprays in the vicinity of the orifice exits have experimentally been verified to yield well dispersed sprays and the desired benefits of HCCI under various conditions. The purpose of this work is to use Computational Fluid Dynamics (CFD) as a tool to simulate and evaluate non-impinging and impinging nozzles with respect to mixture formation in direct-injected HCCI. Three different nozzles are considered: one non-impinging and two impinging nozzles with 30 and 60 degree collision angle respectively. Lagrangian CFD simulations of impinging sprays using the traditional collision model of O’Rourke is not sufficient in order obtain the correct spray properties of impinging sprays. This work proposes an enhanced collision model, which is an extension of the O’Rourke model with respect to collision frequency, post collisional velocities and collision induced break-up. The enhanced model is referred to as the EORIS model (Enhanced O’Rourke model for Impinging Sprays). The initial drop size distribution at orifice and break-up time constant of the standard Wave model is calibrated and calculated wall impingement (piston and liner) is compared with combustion efficiency, smoke, HC and CO emissions as a function of injection timing. A set of model parameters were selected for further evaluation. These model parameters and the EORIS collision model were applied to non-impinging and impinging nozzles under low- and high load conditions. The EORIS model and the selected model parameters are able to predict wall impingement in agreement with experimental measurements of combustion efficiency and smoke emissions under low- and high load conditions for the investigated nozzles. A benefit is that one set of model parameters can be used to predict mixture formation, and there is no need for additional model calibration when, for instance, the injection timing or nozzle geometry is changed. In general, experiments and simulations indicate that impinging nozzles are recommended for early injection timing in the compression stroke. This is due to the shorter penetration which leads to a reduced risk for wall impingement. The non-impinging nozzles are, however, beneficial for later injection timing in the compression stroke. During these injection conditions the impinging nozzles have a more stratified charge and under some conditions poor mixture quality is achieved. / HCCI-konceptet (Homogeneous Charge Compression Ignition) är en tänkbar förbränningsprincip för att uppnå låga NOx och sotemissioner, speciellt under låglast förhållanden. Då Diesel används som bränsle är tidig direktinsprutning under kompressionsslaget en tänkbar strategi för att åstadkomma gynnsamma HCCI-förhållanden. Den tidiga direktinsprutningen medför däremot att risken för väggvätning ökar, på grund av den minskade densiteten i cylindern. Detta ställer krav på bränslesprejen som måste vara väl fördelad i cylindern för att undvika väggvätning. Specialkonstruerade spridarspetsar som skapar kollision av sprejerna nära hålmynningen, så kallade kolliderande sprejer, har experimentellt påvisats vara fördelaktiga för HCCI förbränning, tack vare kortare sprejpenetration och voluminös sprej. Syftet med detta arbete är att använda CFD (Computational FluidDynamics) som ett verktyg för att simulera och evaluera ickekolliderande och kolliderande sprejer med avseende på blandningsbildning under direktinsprutade HCCI förhållanden. Tre olika spridarspetsar har undersökts: en icke-kolliderande och två kolliderande med kollisionsvinkel 30 och 60 grader. CFD-simuleringar av kolliderande sprejer med Lagrangiansk modelleringsteknik och O’Rourkes traditionella kollisionsmodell har visat sig vara otillräcklig för att uppnå korrekta sprejegenskaper. Den här avhandlingen presenterar en förbättrad kollisionsmodell baserad på O’Rourkes ursprungliga kollisionsmodell med avseende på kollisionsfrekvens, dropphastighet efter kollision och kollisionsviinducerad break-up. Den förbättrade modellen kallas EORIS (Enhanced O’Rourke model for Impinging Sprays). Den initiala droppfördelningen vid spridarspetsens hålmynning och Wave-modellens tidskonstant för break-up har kalibrerats och beräknad väggvätning (kolv och foder) har jämförts med förbränningsverkningsgrad, rök, HC och CO-emissioner som funktion av insprutningstidpunkt. De valda modellparametrarna och EORIS-modellen tillämpades för att evaluera blandningsbildningen på kolliderande och icke-kolliderande spridarspetsar under låg- och höglast-förhållanden. EORIS-modellen och de utvalda modellparametrarna kan predikteraväggvätning i överensstämmelse med uppmätt förbränningsverkningsgrad och rökemissioner under låglast- och höglastförhållanden för de undersökta spridarspetsarna. En fördel är att de utvalda modellparametrarna kan prediktera blandningsbildningen och det finns inget behov att justera modellparametrarna då t.ex. insprutningstidpunkten eller spridarspetsgeometrin ändras. Generellt påvisar såväl experiment som simuleringar att de kolliderande sprejerna är lämpliga för tidig direktinsprutning underkompressionsslaget. Det är på grund av kort sprejpenetration som reducerar risken för väggvätning. De icke-kolliderande sprejerna är dock lämpliga för sen direktinsprutning under kompressionsslaget. Under dessa förhållanden har de kolliderande sprejerna en mer stratifierad blandning och under vissa förhållanden uppnås då en ofördelaktig blandningskvalitet. / QC 20100819
|
2 |
Potentiel de la combustion HCCI et injection précoce / Potential of HCCI combustion and early injectionAndré, Mathieu 15 December 2010 (has links)
Depuis plusieurs années, l’une des problématiques sociétales est de diminuer les émissions de polluants et de gaz à effet de serre dans l’atmosphère. Le secteur du transport terrestre est directement concerné par ces considérations. Le moteur Diesel semble promis à un bel avenir grâce à son rendement supérieur à celui du moteur à allumage commandé, conduisant à de plus faibles rejets de CO2. Cependant, sa combustion génère des émissions d’oxyde d’azote (NOx) et de particules dans l’atmosphère. Les normes anti-pollution étant de plus en plus sévères et les incitations à diminuer les consommations de carburant de plus en plus fortes, le moteur Diesel est confronté à une problématique NOx/particules/consommation toujours plus difficile à résoudre. Une des voies envisagées consiste à modifier le mode de combustion afin de limiter les émissions polluantes à la source tout en conservant de faibles consommations. La voie la plus prometteuse est la combustion HCCI (Homogeneous Charge Compression Ignition) obtenue par injections directes précoces. Plusieurs limitations critiques doivent cependant être revues et améliorées : le mouillage des parois par le carburant liquide et le contrôle de la combustion à forte charge. Le but de cette thèse est ainsi de mieux comprendre les phénomènes mis en jeu lors de la combustion HCCI à forte charge obtenue par des multi-injections directes précoces. Une méthodologie a été mise au point afin de détecter le mouillage des parois du cylindre, ce qui a permis de comprendre l’effet du phasage et de la pression d’injection sur cette problématique. Une stratégie optimale de multi-injections permettant d’atteindre une charge élevée sans mouiller les parois a ainsi été développée et choisie. Nous avons ensuite pu mettre en évidence le potentiel de la stratification par la dilution en tant que moyen de contrôle de la combustion en admettant le diluant dans un seul des 2 conduits d’admission. Des mesures réalisées en complémentarité sur le même moteur mais en version ‘optique’, ont permis, à partir de la technique de Fluorescence Induite par Laser, de montrer que concentrer le diluant dans les zones réactives où se situe le carburant permet un meilleur contrôle de la combustion, ce qui permet d’amener le taux de dilution a des niveaux faisables technologiquement. / For several years, reduce pollutant and greenhouse gas emissions in the atmosphere is become a leitmotiv. The automotive world is directly affected by these considerations. Diesel engine has a promising future thanks to its efficiency higher than that of S.I. engine, leading to lower CO2 emissions. However, Diesel combustion emits nitrogen oxides (NOx) and particulates in the atmosphere. Emissions regulations are more and more severe, and considerations about fuel consumption are more and more significant. Thus, Diesel engine has to face a NOx/particulates/consumption issue that is more and more difficult to answer. One of the considered ways to reduce pollutant emissions while maintaining low fuel consumptions is to change the combustion mode. The most promising way is Homogeneous Charge Compression Ignition (HCCI) combustion with early direct injections. However, two major issues have to be answered: the wall wetting and the combustion control at high load. Thus, the objective of this PhD thesis is to better understand phenomena occurring during HCCI combustion at high load with early direct injections in order to answer these issues. We have developed a new methodology to detect the cylinder wall wetting process. This allowed to understand the effects of injection phasing and injection pressure on this issue. A multiple injections strategy has been tested and improved. It reaches a high load without cylinder wall wetting. Then, we have highlighted the potential of dilutant stratification as a technique of control of combustion. This technique is based on the introduction of dilutant in one inlet pipe while air is introduced in the other. The use of Laser Induced Fluorescence imaging on the same engine but with optical accesses showed that condensing dilutant in the reactive zones where the fuel is improves combustion control and allows the use of reasonable dilution level.
|
3 |
Exploration And Assessment of HCCI Strategies for a Multi-Cylinder Heavy-Duty Diesel EnginePandey, Sunil Kumar January 2016 (has links) (PDF)
Homogeneous Charge Compression Ignition (HCCI) combustion is an alternative combustion mode in which the fuel is homogeneously mixed with air and is auto-ignited by compression. Due to charge homogeneity, this mode is characterized by low equivalence ratios and temperatures giving simultaneously low nitric oxide (NOx) and soot in diesel engines. The conventional problem of NOx-soot trade-off is avoided in this mode due to absence of diffusion combustion. This mode can be employed at part load conditions while maintaining conventional combustion at high load thus minimizing regulatory cycle emissions and reducing cost of after-treatment systems. The present study focuses on achieving this mode in a turbocharged, common rail, direct injection, four-cylinder, heavy duty diesel engine. Specifically, the work involves a combination of three-dimensional CFD simulations and experiments on this engine to assess both traditional and novel strategies related to fuel injection.
The first phase of the work involved a quasi-dimensional simulation of the engine to assess potential of achieving HCCI. This was done using a zero-dimensional, single-zone HCCI combustion model with n-heptane skeletal chemistry along with a one-dimensional model of intake and exhaust systems. The feasibility of operation with realistic knock values with high EGR rate of 60% was observed. The second aspect of the work involved three-dimensional CFD simulations of the in-cylinder process with wall film prediction to evaluate injection strategies associated with Early Direct Injection (EDI). The extended Coherent Flame Model-3Zone (ECFM-3Z) was employed for combustion simulation of conventional CI and EDI, and was validated with experimental in-cylinder pressure data from the engine. A new Uniformity Index (UI) parameter was defined to assess charge homogeneity. Results showed significant in-homogeneity and presence of wall film for EDI. Simulations were conducted to assess improvement of charge homogeneity by several strategies; narrow spray cone angle, injection timing, multiple injections, intake air heating, Port Fuel Injection (PFI) as well as combination of PFI and EDI. The maximum UI achieved by EDI was 0.78. The PFI strategy could achieve UI of 0.95; however, up to 50% of fuel remained trapped in the port after valve closure. This indicated that except EDI, none of the above-mentioned strategies could help achieve the benefits of the HCCI mode.
The third part of the work involved engine experimentation to assess the EDI strategy. This strategy produced lower soot than that of conventional CI combustion with very short combustion duration, but led to high knock and NOx which is attributed to pool fire burning phenomenon of the wall film, as confirmed by CFD. An Optimized EDI (OptimEDI) strategy was then developed based on results of CFD and Design of Experiments. The Optim EDI consisted of triple injections with split ratio of 41%-45%-14% and advancing the first injection. This strategy gave 20% NOx and soot reduction over the conventional CI mode. Although this strategy gave encouraging results, there was a need for more substantial reduction in emissions without sacrificing efficiency. Hence, a novel concept of utilizing air-assisted Injection (AAI) into the EGR stream was employed, as this implied injecting very small droplets of fuel into the intake which would have sufficient residence time to evaporate before reaching the cylinder, thereby enabling HCCI. The fourth and final part of the work involved engine experimentation with AAI, and combination of OptimEDI with AAI. Results with 20% EGR showed that 5 to 10% of AAI gave further reduction in NOx but not in soot. With experiments involving 48% EGR rate, there was soot reduction of 75% due to combined AAI-EDI. NOx was negligible due to the high EGR rate. Thus, the significant contribution of this work is in proving that combining AAI with EDI as a novel injection strategy leads to substantial NOx and soot reduction.
|
Page generated in 0.1147 seconds