• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 260
  • 43
  • 22
  • 19
  • 12
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 613
  • 183
  • 119
  • 104
  • 91
  • 76
  • 64
  • 58
  • 52
  • 50
  • 46
  • 42
  • 40
  • 38
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

The effects of the Christchurch earthquakes of 2010 and 2011 on the quality of life of children and adolescents with disabilities.

Ryan, Megan Elizabeth January 2015 (has links)
This study explored the effects of the Canterbury earthquakes of 2010 and 2011 on different areas of quality of life (QOL) for children and adolescents with disabilities. Using a survey developed from the Quality of Life Instrument for People with Developmental Disabilities – Short Version (QOL-PDD-SV) (Brown, Raphael & Renwick, 1997) and The World Health Organisation Quality of Life - (WHOQOL)-BREF, parents or caregivers were asked to identify what level of importance and satisfaction their child or adolescent placed on areas of QOL including physical health, psychological health - stress levels and coping ability, attachment to their neighbourhood, friends, family, leisure activities, community access and schooling. They were also asked to determine what level of impact the earthquakes had had on each area of their child or adolescent’s life and overall quality of life in the aftermath of the earthquakes. A total of 31 parents of 22 males and 9 females between the ages of 2.5 years to 19 years of age (mean age: 12.6 years) responded. The results were collated and analysis was run to measure for the effect of age, gender and geographical location. The results found that the earthquakes affected nearly every area of QOL for the children and adolescents. The biggest impact on the children’s psychological health and their ability to cope It was observed that younger children (<13) were more likely to record improved or lessened effects from the earthquakes in psychological health areas. However, the areas of social belonging and friendships were the least affected by the earthquakes. Female children were more likely to indicate higher scores for social belonging after the earthquakes. Many parents observed that their children developed improved coping skills over the earthquake period. The findings in this study offer a better understanding of how earthquakes can affect the quality of life children and adolescents with disabilities.
232

A seismic spectral discriminant for reservoir induced earthquakes in the southeastern United States

Johnston, Gregory Lamar 05 1900 (has links)
No description available.
233

Analysis of prehistoric shoreline structures of Coastal South Carolina and their significance in assessing regional geological stability

Schwartz, Richard Jay 08 1900 (has links)
No description available.
234

Earthquake focal mechanisms in the southeastern United States

Guinn, S. A. (Stewart Allen) 12 1900 (has links)
No description available.
235

Cyclic group and knapsack facets with applications to cutting planes

Evans, Lisa 08 1900 (has links)
No description available.
236

Descriptions of coping with commonly occurring events by highly self-regulated boys living in earthquake-affected Christchurch

Gillman, Solfrid Hessellund January 2015 (has links)
Children are often overlooked in the aftermath of a natural disaster, and children’s use of coping strategies plays an important part in their post-disaster adaptation (Vernberg, La Greca, Silverman, & Prinstein, 1996). The aim of this qualitative study was to explore the coping strategies of children with adequate self-regulation skills and minimal behaviour problems, living in Christchurch following the major 2010 and 2011 earthquakes. This aim was achieved through the use of semi-structured interviews with five seven-year-old children, their parents, and their teachers. These interviews were analysed using Directed Content Analysis and results showed that children most often reported using active and adaptive coping strategies, followed by avoidant strategies. Results in the current literature regarding children’s coping suggest that children exposed to natural disasters are able to utilise strategies that involve some personal control over their environment and emotions, through the use of active and adaptive coping strategies. Findings from this study contribute to the current understanding of children’s use of coping strategies when faced with commonly occurring childhood upsets. Further research is required regarding the outcomes associated with the use of effective coping strategies following traumatic events.
237

The Spatial and Temporal Patterns of Anxiety and Chest Pain Resulting From The Canterbury Earthquakes

Reed, Kimberley Jane January 2013 (has links)
The aim of this thesis was to examine the spatial and the temporal patterns of anxiety and chest pain resulting from the Canterbury, New Zealand earthquaeks. Three research objectives were identified: examine any spatial or termporal clusters of anxiety and chest pain; examine the associations between anxiety, chest pain and damage to neighbourhood; and determine any statistically significant difference in counts of anxiety and chest pain after each earthquake or aftershock which resulted in severe damage. Measures of the extent of liquefaction the location of CERA red-zones were used as proxy measures for earthquake damage. Cases of those who presented to Christchurch Public Hospital Emergency Department with either anxiety or chest pain between May 2010 and April 2012 were aggregated to census area unit (CAU) level for analysis. This thesis has taken a unique approach to examining the spatial and spatio-temporal variations of anxiety and chest pain after an earthquake and offers unique results. This is the first study of its kind to use a GIS approach when examining Canterbury specific earthquake damage and health variables at a CAU level after the earthquakes. Through the use of spatio-termporal scan modelling, negative and linear regression modelling and temporal linear modelling with dummy variables this research was able to conclude there are significant spatial and temporal variations in anxiety and chest pain resulting from the earthquakes. The spatio-termporal scan modelling identified a hot cluster of both anxiety and chest pain within Christchurch at the same time the earthquakes occurred. The negative binomial model found liquefaction to be a stronger predictor of anxiety than the Canterbury Earthquake Recovery Authority's (CERA) land zones. The linear regression model foun chest pain to be positively associated with all measures of earthquake damage with the exception of being in the red-zone. The temporal modelling identified a significant increase in anxiety cases one month after a major earthquake, and chest pain cases spiked two weeks after an earthquake and gradually decreased over the following five weeks. This research was limited by lack of control period data, limited measures of earthquake damage, ethical restrictions, and the need for population tracking data. The findings of this research will be useful in the planning and allocation of mental wellbeing resources should another similar event like the Canterbury Earthquakes occur in New Zealand.
238

Vulnerabilities to Seismic Hazards in Coastal and River Environments: Lessons post the Canterbury Earthquake Sequence 2010-2012, New Zealand

Kelland, Emma Jean January 2013 (has links)
Coastal and river environments are exposed to a number of natural hazards that have the potential to negatively affect both human and natural environments. The purpose of this research is to explain that significant vulnerabilities to seismic hazards exist within coastal and river environments and that coasts and rivers, past and present, have played as significant a role as seismic, engineering or socio-economic factors in determining the impacts and recovery patterns of a city following a seismic hazard event. An interdisciplinary approach was used to investigate the vulnerability of coastal and river areas in the city of Christchurch, New Zealand, following the Canterbury Earthquake Sequence, which began on the 4th of September 2010. This information was used to identify the characteristics of coasts and rivers that make them more susceptible to earthquake induced hazards including liquefaction, lateral spreading, flooding, landslides and rock falls. The findings of this research are applicable to similar coastal and river environments elsewhere in the world where seismic hazards are also of significant concern. An interdisciplinary approach was used to document and analyse the coastal and river related effects of the Canterbury earthquake sequence on Christchurch city in order to derive transferable lessons that can be used to design less vulnerable urban communities and help to predict seismic vulnerabilities in other New Zealand and international urban coastal and river environments for the future. Methods used to document past and present features and earthquake impacts on coasts and rivers in Christchurch included using maps derived from Geographical Information Systems (GIS), photographs, analysis of interviews from coastal, river and engineering experts, and analysis of secondary data on seismicity, liquefaction potential, geology, and planning statutes. The Canterbury earthquake sequence had a significant effect on Christchurch, particularly around rivers and the coast. This was due to the susceptibility of rivers to lateral spreading and the susceptibility of the eastern Christchurch and estuarine environments to liquefaction. The collapse of river banks and the extensive cracking, tilting and subsidence that accompanied liquefaction, lateral spreading and rock falls caused damage to homes, roads, bridges and lifelines. This consequently blocked transportation routes, interrupted electricity and water lines, and damaged structures built in their path. This study found that there are a number of physical features of coastal and river environments from the past and the present that have induced vulnerabilities to earthquake hazards. The types of sediments found beneath eastern Christchurch are unconsolidated fine sands, silts, peats and gravels. Together with the high water tables located beneath the city, these deposits made the area particularly susceptible to liquefaction and liquefaction-induced lateral spreading, when an earthquake of sufficient size shook the ground. It was both past and present coastal and river processes that deposited the types of sediments that are easily liquefied during an earthquake. Eastern Christchurch was once a coastal and marine environment 6000 years ago when the shoreline reached about 6 km inland of its present day location, which deposited fine sand and silts over this area. The region was also exposed to large braided rivers and smaller spring fed rivers, both of which have laid down further fine sediments over the following thousands of years. A significant finding of this study is the recognition that the Canterbury earthquake sequence has exacerbated existing coastal and river hazards and that assessments and monitoring of these changes will be an important component of Christchurch’s future resilience to natural hazards. In addition, patterns of recovery following the Canterbury earthquakes are highlighted to show that coasts and rivers are again vulnerable to earthquakes through their ability to recovery. This city’s capacity to incorporate resilience into the recovery efforts is also highlighted in this study. Coastal and river areas have underlying physical characteristics that make them increasingly vulnerable to the effects of earthquake hazards, which have not typically been perceived as a ‘coastal’ or ‘river’ hazard. These findings enhance scientific and management understanding of the effects that earthquakes can have on coastal and river environments, an area of research that has had modest consideration to date. This understanding is important from a coastal and river hazard management perspective as concerns for increased human development around coastlines and river margins, with a high seismic risk, continue to grow.
239

GEOPHYSICAL AND GEOLOGICAL INVESTIGATION OF NEOTECTONIC DEFORMATION ALONG THE CABORN AND HOVEY LAKE FAULTS, WABASH VALLEY FAULT SYSTEM, CENTRAL UNITED STATES

Whitt, James 01 January 2007 (has links)
Seismic reflection (P- and SH-wave), ground-penetrating radar, correlative drilling, and age dating data provide evidence of neotectonic deformation along the Caborn (CF) and Hovey Lake (HLF) faults, in the Wabash Valley fault system (WVFS). The WVFS is a series of high-angle normal faults located primarily in southern Indiana and Illinois. Since their formation, these faults have likely been transpressionally reactivated in the contemporary E-W-oriented compressive stress state. The WVFS has experienced large prehistoric earthquakes, but only moderate historic and contemporary seismicity; therefore, the seismic potential in this region is poorly defined. The bedrock expressions of the CF and HLF were imaged with seismic reflection data (P- and SH-wave). Higher resolution analyses were performed with seismic (SHwave) and ground-penetrating radar surveys to characterize structure that may extend into the overlying Quaternary sediments. Anomalous features were cored to verify structure, and to collect datable material. The CF and HLF are interpreted to extend into the uppermost five meters of sediment and to displace horizons dated to 19,740 and 31,000 years before present, respectively. Displacement along the HLF is interpreted to extend 2-3 meters above the associated age date. These structures represent the only known primary coseismic deformation of the Late Quaternary within the WVFS.
240

Shear-Wave Splitting Observed in Local Earthquake Data on the Reykjanes Peninsula, SW Iceland

Buhcheva, Darina January 2014 (has links)
Shear-wave splitting is a phenomenon observed in almost all in situ rocks. Due to propagation through stress-aligned and fluid-saturated microcracks and fractures the initial shear wave splits into two almost orthogonal waves which propagate with different velocities along similar ray paths. The process is characterized by the polarization direction of the faster split shear wave, which is parallel to the orientation of the cracks, and the time delay between the onsets of the two waves. The analysis of shear-wave splitting has been conducted over records of 233 microearthquakes in the vicinity of five seismic stations in SW Iceland. Visual methods have been applied to the data to retrieve the final results for polarization directions and time delays. The main polarization azimuth for the leading split wave is N30°- 60°E which is in full agreement with the mapped alignments of normal faults and volcanic fissures in the surface. The time delays measured at different sites vary in the range of 10-100 ms for the events of best quality. In general, splitting times do not show a clear pattern at all recording sites with increasing depth. The only firm conclusion that can be drawn from the time delays is that at station BLF in the Brennisteinsfjöll fissure swarm, the time delays are smaller than in the Hengill area and therefore the strength of anisotropy beneath that station appears to be lower.

Page generated in 0.1154 seconds