• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nutrient recovery from source-separated urine through technical Integration of ammonia stripping, struvite precipitation, and adsorption

Wu, Haotian 07 June 2024 (has links)
Cette thèse de doctorat vise à améliorer notre compréhension de la récupération des nutriments à partir de l'urine séparée à la source, y compris l'azote, le phosphore et le potassium. L'objectif général est de parvenir à une récupération concomitante de ces trois macronutriments. Plus précisément, il s'agit d'intégrer techniquement l'extraction de l'ammoniac, l'adsorption de Na-chabazite et de biochar, et la précipitation de struvite, dans le but d'améliorer l'efficacité de la récupération et la faisabilité économique. La principale nouveauté réside dans l'intégration technique, avec un accent particulier sur la récupération du potassium. Ainsi, la présente étude doctorale commence par une revue complète de la littérature (chapitre I), suivie de deux parties de recherche scientifique axées sur le travail expérimental avec de l'urine hydrolysée et de l'urine fraîche (chapitres II et III), respectivement, et se termine par une évaluation technico-économique dans le chapitre IV. Le chapitre I a fourni un examen critique de l'intégration des trois technologies physicochimiques clés de récupération des nutriments mentionnées ci-dessus du point de vue de la description technique du processus, de l'échelle actuelle d'application et des défis potentiels et perspectives à venir. En se concentrant principalement sur la récupération du K, le chapitre II a identifié la Na-chabazite comme un adsorbant de K approprié en raison de son efficacité de récupération du K de 91,2 % dans une solution de KCl et de sa capacité supplémentaire de récupération du P. Il a également mis en évidence la molarité élevée du Na-chabazite dans une solution de KCl. L'étude a également mis en évidence la forte molarité du NH₄⁺-N comme principal obstacle à la récupération concomitante des nutriments à partir de l'urine hydrolysée. Pour faire face à cette concurrence, l'étude menée dans le chapitre II a suivi une voie technique conventionnelle et a proposé une stratégie d'intégration technique, atteignant une efficacité de récupération de 98% pour NH₄⁺-N, 97% pour PO₄³⁻-P, et 78% pour K⁺ dans l'urine hydrolysée. Dans le chapitre III, une nouvelle approche a été introduite pour récupérer K⁺ et N sous forme d'urée à partir d'urine fraîche, empêchant ainsi la compétition entre K⁺ et NH₄⁺. Cette intégration technique innovante a permis d'atteindre une efficacité de récupération de 93% pour l'azote, 98% pour le phosphore et 81% pour le potassium dans l'urine fraîche. L'évaluation technico-économique du chapitre IV a révélé que le processus innovant nécessite environ 650 000 CAD de moins en dépenses d'investissement et devrait atteindre son seuil de rentabilité dès la 21ème année. Parallèlement, elle a également permis de comprendre les scénarios optimaux de mise en œuvre des deux procédés de récupération des nutriments, facilitant ainsi leur application potentielle à l'échelle pilote ou à grande échelle. En abordant l'effet compétitif du NH₄⁺ sur la récupération du K⁺, cette recherche contribue à la récupération efficace et concomitante des macronutriments à partir de l'urine hydrolysée et de l'urine fraîche. Elle donne accès à des connaissances de pointe sur la récupération des nutriments à partir des eaux usées et inspire des recherches futures pour de nouvelles avancées dans ce domaine. / This PhD thesis aims to enhance our comprehension of nutrient recovery from source-separated urine, including nitrogen, phosphorus, and potassium. The general objective is to achieve concomitant recovery of these three macronutrients. Specifically, it involves technical integration of ammonia stripping, Na-chabazite and biochar adsorption, and struvite precipitation, with the goal of advancing the recovery efficiency and economic feasibility. The primary novelty lies in the technical integration with a specific focus on potassium recovery. Thus, the present PhD study begins with a comprehensive literature review (Chapter I), followed by two sections of scientific research focusing on experimental work with hydrolyzed urine and fresh urine (Chapters II and III, respectively), and concludes with a techno-economic assessment in Chapter IV. Chapter I provided a critical review on the integration of the abovementioned three technologies from the perspective of process technical description, the current scale of application and potential challenges and perspectives ahead. With a primary focus on K recovery, Chapter II identified Na-chabazite as a suitable K adsorbent due to its K recovery efficiency of 91.2% in KCl solution and additional P recovery capacity. It also highlighted the high molarity of NH₄⁺-N as the main obstacle for concomitant nutrient recovery from hydrolyzed urine. To address this competition, the study conducted in Chapter II followed a conventional technical pathway and proposed a technical integration strategy, achieving a recovery efficiency of 98% for NH₄⁺-N, 97% for PO₄³⁻-P, and 78% for K⁺ in hydrolyzed urine. In Chapter III, a novel approach was introduced to recover K⁺ and N as urea from fresh urine, thereby preventing the competition between K⁺ and NH₄⁺. This innovative technical integration achieved a recovery efficiency of 93% for N, 98% for P, and 81% for K in fresh urine. The techno-economic assessment in Chapter IV revealed that the innovative process requires approximately 650,000 CAD less in capital expenditure and is expected to reach its break-even point as early as the 21st year. Meanwhile, it offered insights into the optimal scenarios for implementing both nutrient recovery processes, facilitating their potential pilot or full-scale application. By addressing the competitive effect of NH₄⁺ on K+ recovery, this research contributes to the efficient and concomitant recovery of macronutrients from both hydrolyzed and fresh urine. It provides access to state-of-the-art knowledge regarding nutrient recovery from wastewater and inspire future research for further advancements in this field.

Page generated in 0.2902 seconds