• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 1
  • 1
  • 1
  • Tagged with
  • 31
  • 31
  • 31
  • 16
  • 10
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Understanding the Role of Health Care Workers in a Trade-off Model between Contact and Transmission for Ebola Virus Disease

Martinez-Soto, Eduan E. January 2016 (has links)
No description available.
22

The effects of active surveillance and response to zoonoses and anthroponosis

Scaglione, Christopher Anthony 31 August 2005 (has links)
See front file / Health Studies / DLITT ET PHIL (HEALTH ST)
23

Predictive Models for Ebola using Machine Learning Algorithms

Unknown Date (has links)
Identifying and tracking individuals affected by this virus in densely populated areas is a unique and an urgent challenge in the public health sector. Currently, mapping the spread of the Ebola virus is done manually, however with the help of social contact networks we can model dynamic graphs and predictive diffusion models of Ebola virus based on the impact on either a specific person or a specific community. With the help of this model, we can make more precise forward predictions of the disease propagations and to identify possibly infected individuals which will help perform trace – back analysis to locate the possible source of infection for a social group. This model will visualize and identify the families and tightly connected social groups who have had contact with an Ebola patient and is a proactive approach to reduce the risk of exposure of Ebola spread within a community or geographic location. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2017. / FAU Electronic Theses and Dissertations Collection
24

Kono Members' Perceptions of Burial Practices and the Spread of Ebola Virus Disease

Panda, Comfort Kenyeh 01 January 2018 (has links)
Sierra Leone was heavily affected by the West African Ebola virus disease (EVD) epidemic from 2013 to 2016. Ongoing EVD transmission during the epidemic was connected to several factors including unsafe traditional burial practices. This phenomenological qualitative study addressed Kono members' perceived knowledge, attitudes, and beliefs regarding how burial practices influenced EVD transmission. Rosenstock's health belief model provided the framework for the study. The participants purposefully selected from various religions and professions were interviewed individually and in focus group settings. Similar phrases and comments were identified from the interview responses resulted which resulted in the following 5 main themes: (a) Kono community leaders and public health workers were cognizant of important EVD issues, but there was a knowledge deficit among Konos about EVD and its mode of transmission; (b) although customary burial rituals were temporarily banned from 2014 to 2016, they were practiced among the Konos to promote culture-driven dignity and respect for the dead; (c) many Konos harbored grudges and mistrusted government officials and public health workers; (d) infrastructural deficits were a barrier to health care as private and public sectors lacked training and equipment to mitigate the 2013-2016 EVD outbreak; and (e) participants were willing to adopt safer burial practices if EVD outbreaks were to reemerge. These findings indicated that EVD transmission was connected to unsafe burial practices. Findings may be used to improve community engagement and public health outreach efforts to promote safer burial practices, especially during periods of infectious disease outbreaks.
25

The effects of active surveillance and response to zoonoses and anthroponosis

Scaglione, Christopher Anthony 31 August 2005 (has links)
See front file / Health Studies / DLITT ET PHIL (HEALTH ST)
26

Dynamics and Implications of Data-Based Disease Models in Public Health and Agriculture

January 2016 (has links)
abstract: The increased number of novel pathogens that potentially threaten the human population has motivated the development of mathematical and computational modeling approaches for forecasting epidemic impact and understanding key environmental characteristics that influence the spread of diseases. Yet, in the case that substantial uncertainty surrounds the transmission process during a rapidly developing infectious disease outbreak, complex mechanistic models may be too difficult to be calibrated quick enough for policy makers to make informed decisions. Simple phenomenological models that rely on a small number of parameters can provide an initial platform for assessing the epidemic trajectory, estimating the reproduction number and quantifying the disease burden from the early epidemic phase. Chapter 1 provides background information and motivation for infectious disease forecasting and outlines the rest of the thesis. In chapter 2, logistic patch models are used to assess and forecast the 2013-2015 West Africa Zaire ebolavirus epidemic. In particular, this chapter is concerned with comparing and contrasting the effects that spatial heterogeneity has on the forecasting performance of the cumulative infected case counts reported during the epidemic. In chapter 3, two simple phenomenological models inspired from population biology are used to assess the Research and Policy for Infectious Disease Dynamics (RAPIDD) Ebola Challenge; a simulated epidemic that generated 4 infectious disease scenarios. Because of the nature of the synthetically generated data, model predictions are compared to exact epidemiological quantities used in the simulation. In chapter 4, these models are applied to the 1904 Plague epidemic that occurred in Bombay. This chapter provides evidence that these simple models may be applicable to infectious diseases no matter the disease transmission mechanism. Chapter 5, uses the patch models from chapter 2 to explore how migration in the 1904 Plague epidemic changes the final epidemic size. The final chapter is an interdisciplinary project concerning within-host dynamics of cereal yellow dwarf virus-RPV, a plant pathogen from a virus group that infects over 150 grass species. Motivated by environmental nutrient enrichment due to anthropological activities, mathematical models are employed to investigate the relevance of resource competition to pathogen and host dynamics. / Dissertation/Thesis / Doctoral Dissertation Applied Mathematics 2016
27

The Public Health Response to an Ebola Virus Epidemic: Effects on Agricultural Markets and Farmer Livelihoods in Koinadugu, Sierra Leone

Beyer, Molly 08 1900 (has links)
During the 2013/16 Ebola virus disease outbreak in West Africa, numerous restrictions were placed on the movement and public gathering of local people, regardless of if the area had active Ebola cases or not. Specifically, the district of Koinadugu, Sierra Leone, preemptively enforced movement regulations before there were any cases within the district. This research demonstrates that ongoing regulations on movement and public gathering affected the livelihoods of those involved in agricultural markets in the short-term, while the outbreak was active, and in the long-term. The forthcoming thesis details the ways in which the Ebola outbreak international and national response affected locals involved in agricultural value chains in Koinadugu, Sierra Leone.
28

Behavioral and Environmental Attributes of Ebola Epidemic in West Africa and United States Emergency Nurses’ Motivation to Protect Themselves against Ebola Infection

Leigh, Laurasona January 2016 (has links)
No description available.
29

Structural studies on a hepatitis C virus-related immunological complex and on Ebola virus polymerase cofactor VP35

Fadda, Valeria January 2015 (has links)
Hepatitis C virus (HCV) is one of the leading causes of hepatocellular carcinoma worldwide. HCV-neutralizing antibody AP33 recognizes a linear, highly conserved epitope on the viral entry protein E2, disrupting the interaction with the cellular receptor CD81 that leads to viral entry. AP33-related anti-idiotypes (Ab₂s) have the potential to carry the internal image of the antigen E2, eliciting the production of AP33-like antibodies in humans. This study reports the mid-resolution structure of the Fab fragment of anti-idiotype A164.3 and the high-resolution structure of the Fab fragment of AP33 in complex with the Fv fragment of anti-idiotype B2.1A. Analysis of the structures and comparison with the previously published structure of AP33 in complex with a peptide corresponding to the E2 epitope, suggests that while A164.3 does not mimic the antigen E2, B2.1A is characterized by high surface complementarity with AP33 and functional antigen mimicry. Thus, B2.1A can be classified as an Ab₂-β, a subgroup of anti-idiotypes carrying the internal image of the antigen. Preliminary binding studies show that AP33 binds B2.1A with nanomolar affinity, supporting the role of B2.1A as an idiotypic vaccine candidate. Zaire ebola virus causes severe, often lethal hemorrhagic fever in humans. Ebola virus polymerase cofactor VP35 is a multifunctional protein involved in, among other functions, dsRNA binding and inhibition of the host's interferon pathways. VP35 contains an N-terminal oligomerization domain and a C-terminal dsRNA-binding domain (RBD). Preliminary results on the oligomerization domain of VP35 suggest that this region contains a coiled-coil motif, as previously reported. In order to validate a recently-discovered dsRNA end-capping pocket as a drug target, the structure of VP35 RBD I278A mutant was solved at high resolution, showing that even a small perturbation in the binding pocket can cause dramatic binding impairment due to loss of contacts with dsRNA.
30

Applied mathematical modelling with new parameters and applications to some real life problems

Mugisha, Stella 09 1900 (has links)
Some Epidemic models with fractional derivatives were proved to be well-defined, well-posed and more accurate [34, 51, 116], compared to models with the conventional derivative. An Ebola epidemic model with non-linear transmission is fully analyzed. The model is expressed with the conventional time derivative with a new parameter included, which happens to be fractional (that derivative is called the 􀀀derivative). We proved that the model is well-de ned and well-posed. Moreover, conditions for boundedness and dissipativity of the trajectories are established. Exploiting the generalized Routh-Hurwitz Criteria, existence and stability analysis of equilibrium points for the Ebola model are performed to show that they are strongly dependent on the non-linear transmission. In particular, conditions for existence and stability of a unique endemic equilibrium to the Ebola system are given. Numerical simulations are provided for particular expressions of the non-linear transmission, with model's parameters taking di erent values. The resulting simulations are in concordance with the usual threshold behavior. The results obtained here may be signi cant for the ght and prevention against Ebola haemorrhagic fever that has so far exterminated hundreds of families and is still a ecting many people in West-Africa and other parts of the world. The full comprehension and handling of the phenomenon of shattering, sometime happening during the process of polymer chain degradation [129, 142], remains unsolved when using the traditional evolution equations describing the degradation. This traditional model has been proved to be very hard to handle as it involves evolution of two intertwined quantities. Moreover, the explicit form of its solution is, in general, impossible to obtain. We explore the possibility of generalizing evolution equation modeling the polymer chain degradation and analyze the model with the conventional time derivative with a new parameter. We consider the general case where the breakup rate depends on the size of the chain breaking up. In the process, the alternative version of Sumudu integral transform is used to provide an explicit form of the general solution representing the evolution of polymer sizes distribution. In particular, we show that this evolution exhibits existence of complex periodic properties due to the presence of cosine and sine functions governing the solutions. Numerical simulations are performed for some particular cases and prove that the system describing the polymer chain degradation contains complex and simple harmonic poles whose e ects are given by these functions or a combination of them. This result may be crucial in the ongoing research to better handle and explain the phenomenon of shattering. Lastly, it has become a conjecture that power series like Mittag-Le er functions and their variants naturally govern solutions to most of generalized fractional evolution models such as kinetic, di usion or relaxation equations. The question is to say whether or not this is always true! Whence, three generalized evolution equations with an additional fractional parameter are solved analytically with conventional techniques. These are processes related to stationary state system, relaxation and di usion. In the analysis, we exploit the Sumudu transform to show that investigation on the stationary state system leads to results of invariability. However, unlike other models, the generalized di usion and relaxation models are proven not to be governed by Mittag-Le er functions or any of their variants, but rather by a parameterized exponential function, new in the literature, more accurate and easier to handle. Graphical representations are performed and also show how that parameter, called ; can be used to control the stationarity of such generalized models. / Mathematical Sciences / Ph. D. (Applied Mathematics)

Page generated in 0.0703 seconds