Spelling suggestions: "subject:"cology (south africa)"" "subject:"cology (south affrica)""
71 |
Biodiversity and ecology of ophiostomatoid fungi associated with trees in the Cape floristic region of South AfricaMusvuugwa, Tendai 04 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: Very little is known about the diversity of fungi associated with Afromontane forests of the Cape Floristic Region (CFR) of South Africa. The ophiostomatoid fungi include many species, some known as pathogens in the CFR, while others are well-known saprophytes important in wood degradation. This study focused on the biodiversity and ecology of tree-associated ophiostomatoid fungi (Ophiostomatales) in the CFR. In addition to this, mites and subcortical beetles associated with the CFR trees were collected, regardless of whether they were associated with ophiostomatoid fungi or not. A relatively high diversity of ophiostomatoid fungi were collected from native trees, ten of which were newly described here. Three further fungal species, two of which are probably new to science, were also collected from exotic Pinus species growing in these forests. Four Ophiostomatales species (including three newly described species) were associated with subcortical beetles on Rapanea melanophloeos and Olea capensis ssp. macrocarpa. These were Sporothrix pallida, Sporothrix aemuluphilus, Raffaelea scabbardiae and Raffaelea rapaneae, associated with the beetles Lanurgus sp. 1, Ctonoxylon sp. 1, Xyleborinus aemuluphilus and a Platypodinae species. This represents a first study to explore the associations between subcortical beetles and ophiostomatoid fungi on native trees in the CFR. In addition to fungi associated with subcortical beetles, several members of the Ophiostomatales associated with wounds on Rapanea melanophloes trees were also collected. These included Ophiostoma stenoceras, Sporothrix reniformis, S. rapaneae, S. lunateae and S. noisomeae. All but O. stenoceras were new to science, and were formally described here. All of these wound-associated species from R. melanophloeos belong to the Sporothrix schenckii – O. stenoceras complex, except for S. noisomeae that was provisionally placed in the S. lignivora complex. Besides fungal taxa collected from wounds on Rapanea melanophloeos, other fungi were also collected from wounds on other host trees species. Three more previously undescribed ophiostomatoid fungal species were collected from this niche. They included Sporothix capensis collected from O. capensis ssp. macrocarpa, Graphilbum roseus collected from many different, unrelated host trees and Graphium ilexiense (Microascales), isolated from wounds on Ilex mitis. The latter represented the first isolation of an ophiostomatoid fungus from this host tree species. Two possibly new fungal species (Sporothrix sp. 1, Ceratocystiopsis sp. 1) and Ophiostoma ips, associated with three bark beetles (Orthotomicus erosus, Hylurgus ligniperda and Hylastes angustatus), were collected from Pinus. Several fungal species were collected from both native trees and non-native trees. These included Sporothrix fusiforme from Brabejum stellatifolium and Acacia mearnsii, O. quercus and O. pluriannulatum-like fungus from several native trees and from A. mearnsii. This suggests a possibility for host shifting of some of these fungi between native and non-native hosts or even between different native hosts. Eight non-ophiostomatoid fungi associated subcortical beetles taxa were found also to infest native trees in the Afromontane forests and in total more than 4500 beetle individuals were collected. Some species of ophiostomatoid fungi collected in this study were found to be associated with other arthropods such as mites. Four phoretic mites species associated with ophiostomatoid fungi (Dendrolaelaps quadrisetus, Histiogaster sp. 3, Elattoma sp. 1 & 2) were collected. In addition, sixteen species of tree wound-associated mites were collected from 12 native trees. Of these, nine were associated with several ophiostomatoid fungi (Graphilbum roseus, O. pluriannulatum-like, O. quercus) that were isolated from several different host trees. This suggests that they may aid in the transport of these fungi from one host species to another.
The possible consequences of transfers of Ophiostomatales species between hosts were tested using pathogenicity tests, which highlighted that some fungi are pathogenic on several different trees. Transfers seemed most likely in fungal species isolated from wounds, especially those associated with mites, because the mites may aid in the vectoring of these. When phoretic mites were tested for their specificity to their vector beetles, they proved to be highly specific. Although some of the fungi associated with these mites and their sub-cortical beetles were also pathogenic, it is less likely for these fungi to be transferred to other host tree species due to the high specificity of their arthropod associates. This study represents one of a few studies that focused on ophiostomatoid fungi, subcortical beetles and mites associated with trees in the Afromontane forests of South Africa. Although we collected a high diversity of Ophiostomatales members, many more still await discovery. It is recommended that future studies focus on the complex inter-organismal interactions in many of the systems uncovered in this study. / AFRIKAANSE OPSOMMING: Baie min is bekend oor die diversiteit van fungi wat met die Afromontane woude van die Kaapse Floristiese Streek (KFS) van Suid Afrika geassosieer is. Die ophiostomatoïde fungi sluit baie spesies in, sommiges bekend as patogene in die KFS, terwyl ander bekende en belangrike saprofiete in houtdegradasie is. Hierdie studie het op die biodiversiteit en ekologie van die boom-geassosieerde ophiostomatoïde fungi (Ophiostomatales) in die KFS gefokus. Daarbenewens is myte en subkortikale kewers wat met die KFS bome geassosieer word ook versamel, ongeag of hulle geassosieerd was met ophiostomatoïde fungi of nie. „n Relatief hoë diversiteit van ophiostomatoïde fungi is van inheemse bome versamel, tien waarvan hier nuut beskryf is. Drie verdere fungi spesies, twee waarvan ook waarskynlik nuut is tot die wetenskap, is ook vanaf Pinus spesies versamel wat in hierdie woude gegroei het. Vier Ophiostomatales spesies (insluitend drie nuut beskryfde spesies) wat met subkortikale kewers op Rapanea melanophloeos en Olea capensis L. ssp. macrocarpa geassosieer is, is ook versamel. Hulle was Sporothrix pallida, Sporothrix aemuluphilus, Raffaelea scabbardiae en Raffaelea rapaneae, geassosieer met die kewers Lanurgus sp. 1, Ctonoxylon sp. 1, Xyleborinus aemuluphilus en „n Platypodinae spesie. Hierdie verteenwoordig die eerste studie wat die assosiasies tussen subkortikale kewers en ophiostomatoïde fungi op inheemse bome in die KFS ondersoek. Addisioneel tot fungi geassosieer met die subkortikale kewers, is verskeie lede van die Ophiostomatales vanaf wonde op Rapanea melanophloes bome versamel. Hulle sluit in Ophiostoma stenoceras, Sporothrix reniformis, S. rapaneae, S. lunateae en S. noisomeae. Almal behalwe O. stenoceras was nuut tot die wetenskap, en is hier formeel beskryf. Al hierdie wond-geassosieerde spesies vanaf R. melanophloeos behoort aan die Sporothrix schenckii – O. stenoceras kompleks, behalwe vir S. noisomeae wat voorlopig in die S. lignivora kompleks geplaas is. Benewens fungi taxa wat van die wonde op Rapanea melanophloes versamel is, is ander fungi ook vanaf die wonde op ander gasheer boom spesies versamel. Drie verdere ophiostomatoïde fungus spesies is in hierdie nis versamel. Hulle sluit in Sporothix capensis wat vanaf O. capensis ssp. macrocarpa versamel is, Graphilbum roseus wat vanaf baie verskillende, onverwante gasheer bome versamel is en Graphium ilexiense (Microascales), wat vanaf wonde op Ilex mitis versamel is. Laasgenoemde verteenwoordig die eerste isolasie van „n ophiostomatoïde fungus vanaf hierdie gasheer boom spesie. Twee moontlik nuwe fungus spesies (Sporothrix sp. 1, Ceratocystiopsis sp. 1) en Ophiostoma ips, geassosieer met drie baskewers (Orthotomicus erosus, Hylurgus ligniperda en Hylastes angustatus) is vanaf Pinus versamel. Verskeie fungi spesies is van beide inheemse en nie-inheemse bome versamel. Hulle het Sporothrix fusiforme vanaf Brabejum stellatifolium en Acacia mearnsii, O. quercus en O. pluriannulatum-like fungus vanaf verskeie inheemse bome en vanaf A. mearnsii ingesluit. Dit suggereer die moontlikheid van gasheer-skuiwing van sommige van hierdie fungi tussen inheemse en uitheemse gashere of selfs tussen verskillende inheemse gashere. Agt nie- ophiostomatoïde geassosieerde subkortikale kewers was ook versamel en in totaal is meer as 4500 kewer indiwidue versamel. Sommige ophiostomatoïde fungus spesies wat in hierdie studie versamel is, was met ander geleedpotiges soos myte geassosieer. Vier foretiese myt spesies wat met ophiostomatoïde fungi geassosieer is (Dendrolaelaps quadrisetus, Histiogaster sp. 3, Elattoma sp. 1 & 2), is versamel. Nege addisioneële myt spesies was met verskeie ophiostomatoïde spesies vanaf verskeie boomspesies geassosieer (Graphilbum roseus, O. pluriannulatum-like, O. quercus). Dit suggereer dat myte die vervoer van hierdie fungi van een gasheer spesie na die ander mag bewerkstellig.
Die moontlike gevolge van die oordrag van Ophiostomatales spesies tussen gashere is getoets deur patogeniteitstoetse. Dit het beklemtoon dat sommige fungi patogenies is op verskeie onverwante boomspesies. Oordraag van spesies is mees waarskynlik in fungi spesies wat vanaf wonde geisoleer is, veral dié wat met myte geassosieer is, want die myte mag hierdie fungi help vervoer. Toe foretiese myte getoets is vir hulle spesifisiteit tot hulle vektore, is hulle hoogs spesifiek bevind. Alhoewel sommige fungi wat met hierdie myte en hulle geassosieerde kewers geassosieer word wel patogenies is, is dit minder waarskylik dat hulle na ander gasheer bome sal verskuif as gevolg van die hoë spesifisiteit van hulle geleedpotige assosiate. Hierdie studie verteenwoordig een van net enkele studies gefokus op ophiostomatoïde fungi, subkortikale kewers en myte wat met bome van die Afromontane woude van Suid-Afrika geassosieer is. Alhoewel ons „n hoë diversiteit van Ophiotomatale lede versamel het, wag baie meer fungi spesies waarskynlik nog op ontdekking. Daar word voorgestel dat toekomstige studies fokus op die komplekse inter-organismiese interaksies in baie van die sisteme wat in hierdie studie blootgelê is.
|
72 |
The ecology of large herbivores native to the coastal lowlands of the fynbos biome in the Western Cape, South AfricaRadloff, Frans Gustav Theodor 12 1900 (has links)
Thesis (DSc (Botany and Zoology))—-Stellenbosch University, 2008. / The south-western Cape is a unique region of southern Africa with regards to generally low
soil nutrient status, winter rainfall and unusually species-rich temperate vegetation. This
region supported a diverse large herbivore (> 20 kg) assemblage at the time of permanent
European settlement (1652). The lowlands to the west and east of the Kogelberg supported
populations of African elephant, black rhino, hippopotamus, eland, Cape mountain and plain
zebra, ostrich, red hartebeest, and grey rhebuck. The eastern lowlands also supported three
additional ruminant grazer species - the African buffalo, bontebok, and blue antelope. The
fate of these herbivores changed rapidly after European settlement. Today the few remaining
species are restricted to a few reserves scattered across the lowlands. This is, however,
changing with a rapid growth in the wildlife industry that is accompanied by the
reintroduction of wild animals into endangered and fragmented lowland areas. These
reintroductions, together with the realisation that we have limited knowledge of the
functional role of native large herbivores in the fynbos ecosystem, provided the rationale for
this study. Questions on large herbivore ecology were addressed at three different spatial
scales.
At the biome level, the reason for the absence of three ruminant grazers from the western
lowlands was investigated. It was hypothesised that the absence of adequate high quality
fodder in the form of C4-grass during the hot and dry summers made it impossible for
buffalo, blue antelope, and bontebok to survive on the western lowlands. The results from
carbon isotope analysis of late prehistoric, historic and contemporary large herbivore remains
were consistent to this Summer Nutritional Stress Hypothesis. I found that eland, elephant,
grey rhebuck, ostrich, and red hartebeest (all species that historically occurred in both coastal
lowlands) can survive with very little (< 15%) C4 grass in their diet. In contrast, bontebok
utilized at least 43% C4 grass biomass in what was considered their natural habitats.
At a regional level, I tested the hypothesis that the large herbivores avoid nutrient-poor
sandstone, sand, and limestone fynbos shrublands in favour of the more nutrient-rich shale
renosterveld habitats. Support for this Renosterveld Preference Hypothesis was found by
means of dung count surveys, which showed that both eland and bontebok readily utilize
renosterveld, but avoid sandstone and limestone fynbos. In the latter they only utilize grassy
microhabitats such as karstic sinkhole depressions. The same hypothesis was addressed in a
novel way by using strontium isotope analysis and concluded that the technique needs more
refinement for it to produce reliable results.
At a landscape level, interactions between fire and grazing by native large herbivores in
relation to renosterveld vegetation dynamics were addressed. I conclude that the
disappearance of the native herbivores probably had little bearing on the putative structural
changes in renosterveld (grassland-shrubland dynamics). Support was found for the notion
that a high fire frequency followed by intense grazing by livestock could have converted
original renosterveld grasslands to unpalatable shrublands. Herbivory by native
grazers/browsers, or the release from it, cannot by itself bring about the vegetation-state
(structural) changes in renosterveld patches which had already been altered to herbivoretolerant
plant communities. However, in combination with fire, the presence or absence of
large herbivores can change the trajectory of the system among the alternative structural
states.
|
73 |
The long term changes of woody vegetation patches inside and outside of exclosures in Kruger National Park, South Africa.Zhou, Rugare 03 March 2014 (has links)
Woody vegetation patches play an important role in the savanna ecosystem. They provide habitat for animal species and are important for some ecological processes such as. However, the coexistence of trees and grass depend on several factors such as fire, elephant, rainfall and soil type. In Kruger National Park, factors that affect the survival of woody vegetation patches are elephants and fire. The loss of woody vegetation patches leads to fragmentation of the landscape. The main aim of this study was to determine the relative difference in the composition, complexity and configuration of woody vegetation patches in and out of the enclosures, and to evaluate the changes in number and size, shape and connectivity of woody vegetation patches between basalt and granite soils over a period of time. There was no linear relationship between composition and complexity and mean nearest neighbour with year, whilst edge density appeared to have a linear relationship with year. Based on edge density results, the results suggested that there was increase in landscape fragmentation in Kruger National Park. The increase in woody patch fragmentation can be attributed to the increase in elephant population, as well as fire frequency and intensity. There was no difference in the composition, complexity and configuration between the inside of the enclosure and the outside. The results show that there is difference between the basalt (Makhohlola) and granite (Nwashitshumbe) region. The results indicated that Makhohlola seems to be highly fragmented than the Nwashitshumbe. The basalt region is situated on rich soils and receives more rainfall than the granite region; hence thus plant growth is greater than that on granite region. High plant growth is associated with high fire frequency and intensity, which result high influence on woody vegetation. The basalt region is dominated with palatable vegetation, as result; the basalt region is associated with large number of herbivores. Due, to high number of herbivores, and high frequency and intensity, the basalt region may be highly fragmented. The change in woody vegetation patches over time, on both basalt and granite region was associated with the interaction between the increase in elephant density, and fire frequency and (or) intensity.
|
74 |
Can the potential for tick infestation influence patterns of resource use by Eland (Taurotragus oryx)?McCulloch, Douglas John 10 May 2016 (has links)
A research report submitted to the Faculty of Science, University of Witwatersrand, in partial
fulfilment of the requirements for the degree of Master of Science (Resource Conservation
Biology).
Johannesburg, 2015 / The vegetation of the Kgaswane Mountain Reserve, in North West Province, South Africa,
was mapped according to seven vegetation structure types, based on tree density and height,
and grass height. Free-living ticks were collected by drag-sampling the vegetation from each
structure type in November 2014, prior to the onset of the summer rains, and February 2015,
once most of the seasonal rains had fallen. Eland (Taurotragus oryx) location information
was recorded from four GPS collared cows over the two sample periods. Tick abundance was
consistently lower in shorter, open, more exposed vegetation structure types, and higher in
more sheltered types. Position higher up in the landscape nullified the positive impacts of
trees on beneath-canopy microclimate in tall open woodlands, as indicated by comparatively
lower tick numbers than in more sheltered woodland types. Tick abundance is influenced by
vegetation structure and the availability of hosts. The majority of ticks trapped during both
periods were larvae, with nymphs mostly present in November and adults mostly present later
in the season, indicating the seasonal nature of tick cohort recruitment. Eland calving
behaviour centred on areas with low adult tick abundance. Eland did not respond to total tick
abundance during either sampling period. They did select areas with low adult tick
abundance, and avoided areas with high adult tick abundance. This corresponded with an
improvement in upland forage quality, which allowed them to avoid foraging in areas with
high adult tick abundance. It is plausible that the potential for infestation by adult ticks may
be a supplementary influence driving the use of space by eland.
|
75 |
Integrating stream networks and landscape mosaics in a new conceptualisation of savanna landscapesCullum, Carola Jane 30 January 2015 (has links)
A thesis submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Doctor of Philosophy. Johannesburg, 2014. / Landscapes are highly organised, with recurring patterns of co-varying and interacting biotic and abiotic ecosystem components. Although there is a rising demand for landscape classifications and maps that describe these patterns, emerging conceptualisations of ecosystems as complex, open and inherently uncertain question the existence of geographically definable ecological regions. It is now well recognised that perceptions of ecological patterns are highly subjective, changing with the scale of observation and the particular combination of environmental attributes that are emphasised. Hence many different valid descriptions (and hence maps) of the same ecosystem are possible, each relating to different perspectives and issues.
This thesis aims to develop a conceptualization of the biophysical interactions that fashion the character and behaviour of water-dependent ecosystems in savanna landscapes that can be used to underpin land classifications and maps for transdisciplinary enquiry and the management and allocation of natural resources. Recent analytical approaches in geomorphology, hydrology, soil science and biogeography are synthesised in a heuristic landscape hierarchy that frames hillslopes within the context of a stream network that varies between different geological and climatic settings. Savanna landscapes offer excellent opportunities to develop this new approach, since many hydrological, geomorphic and biotic processes are tightly coupled around the limited availability of water. Thus many biotic and abiotic variables are spatially clustered, forming a biophysical template that constrains the character and behaviour of a wide range of organisms and processes. Maps of these clusters can therefore provide a platform for integrating a similarly wide range of scientific and managerial perspectives.
The credibility and relevance of the conceptualisation is assessed through its application to a land classification in Kruger National Park (KNP), South Africa. The approach is iterative and reflective, endeavouring to reconcile the impossibility of using traditional reductionist approaches to describe complex systems with the need for reductionist generalisations to describe and analyse complex systems. Assumptions and decisions form a narrative that expressly acknowledges the inclusion of normative values and subjective judgements in conceptualisations of complex systems.
Implementation is based around the use of generalised archetypes to navigate between general principles and particular instances and also between conceptualisations and their representation in a map. Rather than using standardised, pre-determined scales and attributes, archetype development is based on the extensive research that exists for KNP, together with observation and analyses that give the landscape a ‘voice’, using concepts such as hillslope catenas and topographic grain. Analytical lenses are reframed to reveal differences as well as similarities, recognising that not all instances of a class are equally similar to the class archetype, so that some locations may conform more than others to the anticipated class character and behaviour.
At regional scales, physiographic zones are characterised by particular geology, patterns of landscape dissection and catchments that contain certain repeating toposequences of catenal elements. Differences in topographic grain have substantial implications for the construction of ecological maps, since the optimum scales of observation for the same level of the landscape hierarchy differ between landscapes. The associated differences in catchment size, hillslope length and stream density also have profound impacts on the nature and scale of many ecological processes, such that differentiation between physiographic zones is vital for good science, modelling and management.
Two study sites were mapped at catchment and hillslope scales, serving to contrast landscape structures in the finely dissected granites and the coarsely dissected basalts. At both catchment and hillslope scales, the basalt site conformed well to the a priori archetype that described a vegetation toposequence. However, only about half the area of the granite study corresponded to the archetype. Many of these mismatches did not show any difference in vegetation between midslopes and crests, suggesting they lack the contrasting clay/sandy soils that are typical of catenas in this area. It was therefore concluded that these subcatchments are likely to be generated and sustained by a different suite of processes to those described by the archetype and may therefore warrant the development of new archetypes. These findings illustrate how the explicit mapping of catenal elements allows the variability within an area to be assessed, identifying anomalous areas and hillslopes that are likely to behave differently to the hillslopes that conform more precisely to archetypal conceptual models. Understanding the nature and extent of such variations will improve the performance of broad-scale extrapolations and models based on the behaviour of idealised archetypes.
Ultimately, end users will determine whether or not the conceptualisation of savanna landscapes developed in this thesis is capable of rising to the challenges posed by the complexity and heterogeneity of ecological systems in KNP (and elsewhere). Initial indications are positive, given the early uptake of the approach both by the South African Water Research Commission and South African National Parks (SANParks).
|
76 |
Reconceptualising cemetery planning in South Africa: assessing the potentials for approaches informed by social-ecological resilience principlesLeuta, Tsepang Cecilia January 2017 (has links)
A thesis submitted to the Faculty of Engineering and the Built Thesis is submitted in fulfilment of the requirements for the degree of Doctor of Philosophy to the Faculty of Engineering and the Built Environment, School of Architecture and Planning, University of the Witwatersrand, Johannesburg, 2017 / Cemeteries consume vast amounts of land and contest with other land uses deemed more
urgent; yet they are rarely addressed in international policy dialogues. They are generally
not viewed as part of the open-space system and are mostly mono-functional. Resilience
thinking has become an important discourse influencing the way in which urban policy and
planning is conceptualised. There is potential to use these ideas to further develop the new
approaches to cemetery provision, which are influenced by the application of sustainability
concepts, and see them as part of green infrastructure. However, resilience thinking needs
to go beyond technical solutions to consider local institutional and socio-cultural contexts
that affect their application.
South African apartheid policies facilitated segregation that resulted in unsustainable
approaches to cemetery planning and provision. New approaches that engage sustainability
perspectives are being explored. This research explores the experience of implementing
these approaches in the Johannesburg context, and what it might mean to reconceptualise
cemetery planning further through a social-ecological resilience lens. This is achieved by
establishing the relationship of cemeteries to social-ecological systems; investigating how
the current design and provision of cemeteries can be reconceptualised in the context of
resilience thinking; understanding whether newer cemetery planning approaches and
designs adequately meet needs of users, and whether they would be willing to accept new
ways of interment, and identifying barriers that would prevent the uptake of approaches
that are consistent with resilience thinking.
The study employs a case-study methodology focusing on a primary case - Waterval
Cemetery, to understand the applicability of resilience thinking in cemetery planning in
South Africa. Through engagements with key respondents in the municipality, interviews
and focus groups with cemetery users, it seeks diverse participants’ perceptions of newer
cemetery planning approaches, and alternatives to conventional burial. A secondary case
examines Diepsloot Memorial Park, which integrates more innovative elements. Results
show that the application of resilience in cemetery planning requires a strong understanding
of local socio-cultural contexts. Although the idea of cemeteries contributing to the
resilience of cities is conceivable, it could take longer for transformation to happen and for
innovative ideas to be fully accepted. / MT 2018
|
77 |
Mating systems, insect pollination and chemical ecology of grassland Protea species (Proteaceae)Steenhuisen, Sandy-Lynn. January 2012 (has links)
Major transitions between vertebrate and insect pollination systems have occurred many times
during the angiosperm radiation and are associated with evolutionary modifications in floral
traits. In the large ancestrally bird-pollinated African genus Protea (Proteaceae), an
evolutionary shift from bird to insect pollination in the genus is suggested by the fruity
diurnal scent of flowers in a recently evolved clade of grassland species. In this study, I
confirm that four of these grassland Protea species have mixed mating systems and are indeed
insect pollinated, and furthermore demonstrate the functional significance of their floral
presentation and scent chemistry for attraction of pollinators, specifically cetoniine beetles.
The study species, Protea caffra, Protea dracomontana, Protea simplex and Protea
welwitschii, have colourful bowl-shaped inflorescences that produce copious amounts of
pollen and dilute, xylose-rich nectar. Cetoniine beetles were found to be the most suitable
pollinators due to their abundance, size, relatively pure Protea pollen loads, and their
preference for the fruity scent and low growth form of these scented Protea species, as
demonstrated by choice experiments in which inflorescences were offered at either end of a y-maze
or at various heights above the ground, respectively.
Bagging and hand pollinations revealed that these Protea species are self-compatible
and capable of autonomous selfing. Self progeny of P. caffra were as vigorous as cross
progeny in terms of germinability and survivorship to two months. Vertebrate-excluded and
open-pollinated inflorescences yielded similar seed numbers for all species. Supplemental
hand-pollinations, however, failed to increase seed set substantially, an indication of resource
limitation. Outcrossing rates estimated using polymorphisms at eight allozyme loci in progeny
from vertebrate-excluded and open-pollinated treatments of P. caffra were no different
(t=0.59), indicating outcrossing by insects and an equal or insubstantial contribution from bird
pollinators.
The fruity-sweet scents of these species were more complex, with higher whole flower
and mass-specific emission rates, than those in eight bird-pollinated congenerics. The overall
floral scent is shown to be a blend of emissions from various plant parts, especially nectar.
Electroantennography (EAG) revealed that the generalist pollinator Atrichelaphinis tigrina
responds to a variety of volatile compounds found in fruity Protea scents. Field trapping
confirmed that this cetoniine beetle is strongly attracted to ß-linalool (up to 60% of scent
profile) and methyl benzoate.
In conclusion, this study demonstrates the evolution of beetle pollination and mixed
mating systems in a grassland clade of Protea. Volatile compounds that make up the unique
(within Protea) fruity scent of the study species are shown to attract beetles, and the emission
of large amounts of these compounds was probably a key step in the transition from bird to
insect pollination in Protea. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2012.
|
78 |
Concentration of soil nutrients beneath canopies of Acacia erioloba trees in a semi-arid savanna environment of the North-West province, South Africa / Romeo Nndamuleleni MurovhiMurovhi, Romeo Nndamuleleni January 2003 (has links)
Acacia erioloba (synonym: Acacia giraffae) commonly known as Mpatsaka (Sotho),
Mokala (Tswana), Kameeldoring (Afrikaans) and camel Thorn (English) is an indigenous
leguminous tree that is adapted and commonly found in semi-arid savanna environments of South Africa. Being a leguminous plant, Acacia erioloba can fix atmospheric nitrogen into the soil. The objective of this study was to quantify the concentration of plant nutrients in soils beneath the canopies of Acacia erioloba trees in three land-use practices viz: fallow, grazing and bare land. Three trees were randomly selected in each land-use practice and soil samples were collected from beneath and beyond the tree canopies at depths of 0-10 and 10-20 cm.
Consistently, soil analysis revealed that the concentration of nutrients (N, P, Ca, Mg, Zn
and Mn) and soil biological properties (organic carbon, particulate organic matter,
microbial biomass nitrogen and microbial biomass carbon) among the land-use practices
were in the order: fallow > grazing > bare. Differences in the concentration of soil
nutrients between the land-use practices seemed to be influenced by management within
the land-use practices. Nitrogen, phosphorus, potassium and zinc were significantly higher
(p<0.05) in land under grazing while calcium and magnesium, were significantly higher
(p<0.05) under fallow land. As expected, bare land had the lowest concentration of all the
nutrients studied. The presence of animals around Acacia erioloba trees contributed to
higher concentration of nutrients in land under grazing. The differences in the values of
biological properties were considered to be likely due to higher plant biomass on the
topsoil compared to the subsoil that increased the microbial activity. The improved
biological properties are thought to have improved the nutrient concentration through
processes such as mineralisation of nutrients from organic matter.
With the exception of phosphorus (P), potassium (K) and zinc (Zn), concentration of all
other nutrients (N, Ca, Mg and Mn) was not significantly different (p<0.05) in soil from
beneath the tree canopy and those from beyond the tree canopies in all land-use practices.
Topsoil (0-1 0 cm) had, significantly higher (p<0.05) concentration of all nutrients and
biological properties that were measured compared to the sub soil (10-20 cm). This was
attributed to the fact that much of the decomposition of soil organic matter takes place on
the surface layer of the soil where most of the organic materials are added. Nutrient
uptake from deep soil layers by roots of the trees may be another important mechanism
that could enrich surface soils beneath Acacia erioloba tree with nutrients.
The availability to a wheat crop of the nutrients found beneath the canopies of Acacia
erioloba was evaluated using a "Neubauer" seedling technique in a glasshouse. Wheat
seedlings were grown into PVC pots filled with soils collected from beneath and beyond
the tree canopies. The wheat that was grown in soils collected beneath Acacia erioloba
trees had significantly higher (p<O.OS) growth ~d nutrient uptake than that grown in soils
from beyond tree canopies. Plant height, dry matter yields and nutrient uptake by the
wheat seedlings were in the order fallow>grazing>bare land. The plant height were 20.9,
16.4 and 14.2 cm for fallow, grazing and bare, respectively. This was attributed to the high
accumulation of organic matter from different sources such as leaf litter, grass residues and animal wastes under fallow and grazing land. Fallow and grazing promotes large organic matter inputs and therefore create conditions that favour rapid decomposition of organic matter and mineralisation of nutrients.
Correlation coefficients between soil nutrients and nutrients in the tissues of wheat show
that there was a strong and significant relationship between the two. It was suggested from these results that Acacia erioloba trees has a potential to be used in agroforestry systems within the farming systems of the small-scale farmers in the semi-arid savanna ecosystem of the North-West Province. Such systems could include agrislviculture and
sylvopastoral. If Acacia erioloba trees are to be included in agroforestry systems, the
densities need to be increased. This would imply increasing their propagation. More
techniques of propagating the tree need to be researched. The nitrogen fixing potential of
Acacia erioloba needs to be thoroughly investigated. / Thesis (M.Sc (Agric.) North-West University, Mafikeng Campus, 2003
|
79 |
An ecological investigation of the insects associated with exposed carcasses in the northern Kruger National Park : a study of populations and communities.Braack, Lawrence Edward Oliver. 26 June 2014 (has links)
Extensive seasonal collections along with absolute counts of
all the arthropods attracted to medium- and large mammal carcasses
resulted in the most complete record of carrion-fauna in Africa to date.
The abundance of these species and their seasonal, successional, and
diel patterns of carcass-attendance are discussed. More than 98% of
species were insects and their presence at the carcass habitat could be
classified as obligate, opportunistic, or incidental. A recognisable
community of carrion-associated arthropods consistently attracted to the
carcass habitat is described, comprising sarcophages, coprophages, keratophages,
detritivores, predators and parasites. The interactions and
functional ecology of these arthropods is described.
The blow-flies Chrysomyia albiceps (Wd.) and C. marginalis
(Wd.) were found to be pivotal or key species due to the impact of their
larvae on carcass decomposition and their influence on other members of
the community. In view of the importance of these blow-flies, their
abundance, and the potential role of the adults as dispersal agents of disease organisms, studies were performed to clarify the population
dynamics of the two species. The biology and ecology of the immature
stages is discussed, including such aspects as the availability of
mammal carcasses for oviposition and larval development, and mortality
of larvae in the digestive tracts of vultures.
By feeding a radioactive isotope of phosphorous (p[32]) to a
reared population of adult flies, the dispersal and flight ranges,
habitat preferences and population densities of both blow-fly species
were studied. The seasonal abundance of C albiceps, C. marginalis,
and Lucilia spp. was monitored by monthly trapping at three sites in the
study area. Further studies using radioactively-marked blood in a
carcass under natural conditions revealed that the distribution of flyspecks
deposited by blow-flies is largely dependent upon vegetational
structure in the immediate vicinity of the carcass, and the majority of
such droplets occurred near the carcass between one and three metres
above ground. A distinction in fly-specks was made between vomit droplets,
faecal droplets, and the newly tenned discard droplets. The
feeding behaviour of C. albiceps and C. marginalis is discussed with
reference to the transmission of anthrax in the northern K.N.P. / Thesis (Ph.D.)-University of Natal, Pietermaritzburg, 1984.
|
80 |
On the ecology of hyperscum-forming Microsystis aeruginosa in a hypertrophic African lake.Zohary, Tamar. January 1987 (has links)
Light is the primary source of energy in most of earth's ecosystems .
In freshwater ecosystems the major interacting factors that determine
the abundance and species composition of planktonic phototrophs, the
primary utilizers of light, are nutrients, temperature and light.
With increasing eutrophication and declining geographical latitude,
nutrient availability becomes in excess of the organisms'
requirements, water temperature is more favourable for growth, and
community structure depends to a greater extent on light availability.
This study focuses on the population dynamics of the bloom-forming
cyanobacterium Microcystis aeruginosa Kutz. emend. Elenkin in subtropical
Hartbeespoort Dam, South Africa. The objectives of the study
were: to investigate the annual cycle, and the factors leading to the
dominance and success of the cyanobacterium in this hypertrophic, warm
monomictic lake, where light availability is the major factor limiting
phytoplankton growth rates; to study the surface blooms and ultimately
hyperscums that this species forms; and to assess the ecological significance
of hyperscums.
A 4. 5-years field study of phytoplankton abundance and species composition
in relation to changes in the physical environment, was
undertaken. The hypothesis was that M. aeruginosa dominated the
phytoplankton population (> 80 % by volume) up to 10 months of every
year because it maintained itself within shallow diurnal mixed layers
and was thus ensured access to light. It was shown that wind speeds
over Hartbeespoort Dam were strong enough to mix the epilimnion (7 -
18 m depth) through Langmuir circulations only 12 % of the time. At
other times solar heating led to the formation of shallow ( < 2 m)
diurnal mixed layers (Z[1]) that were usually shallower than the
euphotic zone (Zeu; x = 3.5 m), while the seasonal mixed layer (zrn)
was always deeper than Zeu. From the correspondence between vertical
gradients of chlorophyll a concentrations and density gradients, when
M. aeruginosa was dominant, it was implied that this species maintained the bulk of its population within Z[1]. Under the same mixing
conditions non-buoyant species sank into dark layers. These data
point out the importance of distinguishing between Zrn and Z[1], and show
the profound effect that the daily pattern of Z[1], as opposed to the
seasonal pattern of Zrn can have on phytoplankton species composition Adaptation to strong light intensities at the surface was implicated
from low cellular chlorophyll a content (0.132 μg per 10[6] cells) and
high I[k ](up to 1230 μE m⁻² S¯¹). Ensured access to light, the postmaximum
summer populations persisted throughout autumn and winter,
despite suboptimal winter temperatures, by sustaining low losses.
Sedimentation caused a sharp decline of the population at the end of
winter each year and a short ( 2-3 months) successional episode
follCMed, rut by late spring M. aeruginosa. was again dominant.
The mixing regime in Hartbeespoort Dam and the buoyancy mechanism of
M. aeruginosa led to frequent formation of surface bloons and ultimately
hyperscums. Hyperscums were defined as thick (decimeters),
crusted, buoyant cyanobacterial mats, in which the organisms are so
densely packed that free water is not evident. In Hartbeespoort Dam
in winter M. aeruginosa formed hyperscums that measured up to 0.75 m
in thickness, covered more than a hectare, contained up to 2 tonnes of
chlorophyll a, and persisted for 2 - 3 monnths. Hyperscum formation
was shown to depend upon the coincidence of the following
preconditions: a large, pre-existing standing crop of positively
buoyant cyanobacteria; turbulent mixing that is too weak to overcome
the tendency of the cells to float, over prolonged periods (weeks);
lake morphometry with wind-protected sites on lee shores; and high incident
solar radiation. The infrequent occurrence of hyperscums can
be attributed to the rare co-occurrence of these conditions.
Colonies in the hyperscum were arranged in a steep vertical gradient,
where colony compaction increased exponentially with decreasing distance
form the surface. This structure was caused by evaporative
dehydration at the surface, and by the buoyancy regulation mechanism
of M. aeruginosa., which results with cells being unable to lose
boyancy when deprived access to light from above. The mean
chlorophyll a concentration and water content were 3.0 g 1¯¹ and 14 %
at the surface crust, 1.0 g 1¯¹ and 77 % at a few mm depth, and 0.3 g
1¯¹ and 94 % at 10 cm depth, where M. aeruginosa cell concentration
exceeded 109 ml¯¹.
A consequence of the high cell and pigment concentrations was that
light penetrated only 3 mm or less, below which anaerobic, highly
reduced conditions developed. Nutrient concentrations in hyperscum
interstitial water, collected by dialysis, increased dramatically with
time (phosphate: 30-fold over 3 months; ammonia: 260-fold). Volatile
fatty acids, intermediate metabolites in anaerobic decomposition
processes, were present. Gas bubbles trapped within the hyperscum contained methane (28 %) , and CO[2] (19 %), the major end products of
anaerobic decomposition, and no oxygen.
The structure and function of M. aeruginosa in hyperscum was examined
in relation to the vertical position of colonies and the duration of
exposure to hyperscum condition. Colonies and cells collected from 10
em depth in the hyperscum were similar in their morphology (light and
fluorescent microscopy) and ultrastructure (transmission and scanning
electron microscopy) to those of colonies from surface blooms in the
main basin of the lake. With declining depth over the uppermost 10 mm
of the hyperscum cells appeared increasingly dehydrated, decomposed
and' colonized by bacteria.
studies employing microelectrode techniques demonstrated that
photosynthetic activity of colonies at the surface of a newly accumulated
hyperscum rapidly photoinhibited, substrate-limited, and
then ceased within hours of exposure to light intensities > 625 μE m⁻²
S¯¹. Photooxidative death followed. The dead cells dehydrated to
form the dry crust,
from underneath.
and space was thus created for colonies rising
Cells collected from 10 cm depth retained their
photosynthetic capacity ([14]C-uptake experiments) throughout the hyperscum
season, although a considerable decline in this capacity was
noted over the last (third) month.
Altogether the data indicated that spatial separation developed within
the hyperscum, between a zone at the surface of lethal physical
conditions, a zone beneath the surface of stressful and probably
lethal chemical conditions, and a deeper zone of more moderate
conditions, which nevertheless, deteriorated after 2 - 3 months. A
conceptual model describing the fate of a colony entering a hyperscum
was then proposed. According to this model, a colony that arrives
below a hyperscum and is not carried away by currents, becomes over-buoyant
in the dark and floats into the bottom of the hyperscum. With
time it migrates towards, due to its own positive buoyancy, the
buoyancy of colonies rising from underneath, and the collapse of cells
at the top. It survives in the dark, anaerobic environment by maintaining
low levels of basal metabolism while utilizing stored
reserves. Depending on weather conditions, the colony mayor may not
remain within the hyperscum long enough to reach the zone of decomposition
near the surface, where it would die. With the aging of the
hyperscum and the accumulation of trapped decomposition products, the
zone of decomposition expands. Thus, a hyperscum is essentially a
site of a continuous cycle of death and dehydration at the surface and upward migration of colonies from below to replace those that died,
although not all colonies entering the hyperscum necessarily reach the
lethal zone.
The formation of hyperscums was shown to have no major influence on
the annual cycle of M. aeruginosa in Hartbeespoort Dam. The
seasonality of increase and decline of the planktonic population was
similar from year to year, irrespective of whether or not hyperscums
formed. The phenomenon of hyperscums demonnstrated that, as Reynolds
and Walsby (1975) claimed, thick cyanobacterial water-blooms do form
incidentally and have no vital function in the biology of the organism.
water temperature did have a major effect on the annual cycle of this
species in Hartbeespoort Dam. In temperate lakes the low water temperatures
in autumn and winter (<10° C) cause M. aeruginosa to lose
its ability to regain buoyancy in the dark, and consequently it sinks
to bottom sediments. The higher ( > l2°C) minimum winter temperature
in Hartbeespoort Dam leads to the maintenance of a relatively large
residual planktonic population throughout the winter. Unlike the case
in temperate lakes, the long-term survival of M. aeruginosa in warm-water
lakes probably does not depend on winter benthic stocks for the
provision of an inoculum for the following growth season. / Thesis (Ph.D.)-University of Natal, Pietermaritzburg, 1987.
|
Page generated in 0.05 seconds