Spelling suggestions: "subject:"ecosystem engineer"" "subject:"ecosystem eingineer""
21 |
Zur Struktur und Diversität der Bodenvegetation in Laubwäldern mit unterschiedlicher Baumartenvielfalt / On the structure and diversity of herb-layer vegetation in deciduous forests with contrasting tree-species diversityMölder, Andreas 13 June 2008 (has links)
No description available.
|
22 |
Environmental response to burrowing seabird colonies : a study in ecosystem engineeringBancroft, Wesley J. January 2004 (has links)
[Truncated abstract] Ecosystem engineers are organisms that physically modify habitat in a manner that modulate resource flows and species within ecosystems. Ecosystem engineering is distinct from classical interactions (competition, predation, parasitism and mutualism) in that it does not involve direct trophic exchange between organisms. The term ‘ecosystem engineer’ is a recently adopted one, and we are just beginning to investigate the occurrence and impact of engineers in ecosystems. My thesis explores the ecosystem engineering actions of Wedge-tailed Shearwaters, Puffinus pacificus, in a Mediterranean island, heathland ecosystem. I have approached this by (1) describing and quantifying the physical impact of these engineers, and (2) describing and quantifying the effects that these actions have on three major ecosystem components: the soil, the vascular plants, and the vertebrate fauna. Wedge-tailed Shearwaters are procellariid seabirds that excavate nesting burrows on offshore islands. The birds are colonial nesters, and on Rottnest Island, 17 km off the mainland coast of south-western Western Australia, their colonies have expanded considerably in recent decades. The expansion fits the trend observed in other tropicalorigin seabirds that breed in south-western Australia. In the last ten years, two new colonies have appeared (in a total of six) and the number of burrows on the island has almost doubled, to 11 745 ± 1320SE. In the same period the area occupied by the birds has increased by almost half ...
|
23 |
Effect of an engineer species on the diversity and functioning of benthic communities : the Sabellaria Alveolata reef habitat / Effet d’une espèce ingénieur sur la diversité et le fonctionnement des communautés benthiques : l’habitat récifal à Sabellaria alveolataJones, Auriane 14 December 2017 (has links)
A travers le monde, les zones côtières abritent une grande diversité d’ingénieurs de l’écosystème accomplissant des fonctions clés comme le recyclage de la matière organique et des nutriments. Les habitats résultants de l’activité biologique de ces espèces sont exposés à de nombreuses perturbations comme la surpêche, le piétinement ou via l’aménagement des côtes. Dans ce contexte, il est urgent de comprendre le fonctionnement de ces habitats ingénieurés et comment ils sont affectés par des perturbations croissantes. Pendant ma thèse, j’ai utilisé l’habitat récifal construit par le polychète grégaire tubicole Sabellaria alveolata comme cas d’étude. Tout d’abord, les changements environnementaux et biotiques associés à la mise en place d’un récif à S. alveolata et à sa perturbation croissante ont été évalué, se concentrant sur les paramètres du sédiment (e.g. granulométrie, contenu en matière organique) ainsi que la diversité taxonomique et les assemblages d’espèces. De manière similaire, le troisième article se penche sur le fonctionnement trophique de la communauté récifale et d’une communauté contrôle afin de comprendre les effets de la mise en place de l’espèce ingénieur sur les transferts de carbone, s’intéressant successivement à l’ensemble de la communauté des consommateurs, aux consommateurs primaires et à l’importance des sources de nourriture autochtones (microphytobenthos et Ulva sp.) vs allochtone (phytoplancton). Dans cette partie, j’ai utilisé les isotopes stables du carbone et de l’azote ainsi que différentes approches analytiques telles que des mesures de la niche isotopique et des modèles de mélange. L’article 2 a pour but de comprendre les interactions entre complexité de l’habitat récifal, hétérogénéité des sources de nourriture autochtones et échelles spatiales dans l’explication des variations du rapport isotopique du carbone de S. alveolata et d’un suspensivore associée. Dans les deux derniers chapitres, j’ai traité la question du fonctionnement de l’habitat ingénieuré de manière directe, en utilisant des incubations de carottes benthiques pour mesurer des flux biogéochimiques (e.g. demande en oxygène), ou indirecte, en utilisant des indices de diversité fonctionnelle et isotopique intégratifs. Cette dernière partie révèle l’existence d’un optimum de densité de S. alveolata, utilisée comme proxy des perturbations, où la niche trophique et le fonctionnement biogéochimique du récif sont tous les deux maximaux. / Coastal zones worldwide are home to a large diversity of ecosystem engineers that perform key functions such as the recycling of organic matter and nutrients. The habitats resulting from the biological activity of these species are exposed to numerous disturbances such as over harvesting and trampling or via coastal modification. In this context, it is becoming key to understand the functioning of these engineered habitats and how they are affected by increasing disturbances. During my PhD, I used the reef habitat built by the gregarious tubiculous polychaete Sabellaria alveolata as a study case. First, the environmental and biotic changes associated with the establishment of a S. alveolata reef and its increasing disturbance were assessed, focusing on sediment characteristics (e.g. grain-size distribution, organic matter content) along with taxonomic diversity and species assemblage. In the same vain, the third article looks into the trophic functioning of the reef community and a control community to understand the effects of the establishment of the engineer species on carbon transfers, successively looking at the whole consumer community, the primary consumers and the importance of autochthonous (microphytobenthos and Ulva sp.) vs allochthone (phytoplankton) food sources. In this part, I used carbon and nitrogen stable isotopes and different analytical approaches such as isotopic niche metrics and mixing models. Article 2 aims towards understanding the interactions between reef habitat complexity, autochthonous food source heterogeneity and spatial scales in explaining the carbon isotopic ratio variations of S. alveolata and an associated suspension-feeder. In the last two chapters, I address the functioning of the engineered habitat either directly, using benthic core incubations to measure biogeochemical fluxes (e.g. oxygen demand) or indirectly, through the use of integrative functional and isotopic diversity indices. This last part reveals the existence of an optimum value of S. alveolata density, used as a disturbance proxy, where the trophic niche and the biogeochemical functioning of the reef are both maximal.
|
24 |
The influence of biophysical feedbacks and species interactions on grass invasions and coastal dune morphology in the Pacific Northwest, USAZarnetske, Phoebe Lehmann, 1979- 09 September 2011 (has links)
Biological invasions provide a unique opportunity to study the mechanisms that regulate community composition and ecosystem function. Invasive species that are also ecosystem engineers can substantially alter physical features in an environment, and this can lead to cascading effects on the biological community. Aquatic-terrestrial interface ecosystems are excellent systems to study the interactions among invasive ecosystem engineers, physical features, and biological communities, because interactions among vegetation, sediment, and fluids within biophysical feedbacks create and modify distinct physical features. Further, these systems provide important ecosystem services including coastal protection afforded by their natural features. In this dissertation, I investigate the interactions and feedbacks among sand-binding beach grass species (a native, Elymus mollis (Trin.), and two non-natives, Ammophila arenaria (L.) Link and A. breviligulata Fernald), sediment supply, and dune shape along the U.S. Pacific Northwest coast. Dunes dominated by A. arenaria tend to be taller and narrower compared to the shorter, wider dunes dominated by A. breviligulata. These patterns suggest an ecological control on dune shape, and thus, coastal vulnerability to overtopping waves. I investigate the causes and consequences of these patterns with experiments, field observations, and modeling. Specifically, I investigate the relative roles of vegetation and sediment supply in shaping coastal dunes over inter-annual and multi-decadal time scales (Chapter 2), characterize a biophysical feedback between beach grass species growth habit and sediment supply (Chapter 3), uncover the mechanisms leading to beach grass coexistence and whether A. breviligulata can invade and dominate new sections of coastline (Chapter 4), and examine the non-target effects resulting from management actions that remove Ammophila for the recovery of the threatened Western Snowy plover (Charadrius alexandrinus nivosus) (Chapter 5).
I found that vegetation and sediment supply play important roles in dune shape changes across inter-annual and multi-decadal time scales (Chapter 2). I determined that a biophysical feedback between the beach grass growth habits and sediment supply results in species-specific differences in sand capture ability, and thus, is a likely explanation for differences in dune shape (Chapter 3). I found that all three beach grass species can coexist across different sediment deposition rates, and that this coexistence is largely mediated by positive direct and indirect species interactions. I further determined that A. breviligulata is capable of invading and dominating the beach grass community in regions where it is currently absent (Chapter 4). Combined, these findings indicate that A. breviligulata is an inferior dune building species as compared to A. arenaria, and suggest that in combination with sediment supply gradients, these species differences ultimately lead to differences in dune shape. Potential further invasions of A. breviligulata into southern regions of the Pacific Northwest may diminish the coastal protection ability of dunes currently dominated by A. arenaria, but this effect could be moderated by the predicted near co-dominance of
A. arenaria in these lower sediment supply conditions. Finally, I found that the techniques used to remove Ammophila for plover recovery have unintended consequences for the native and endemic dune plant communities, and disrupt the natural disturbance regime of shifting sand. A whole-ecosystem restoration focus would be an improvement over the target-species approach, as it would promote the return of the natural disturbance regime, which in turn, would help recover the native biological community. The findings from this dissertation research provide a robust knowledge base that can guide further investigations of biological and physical changes to the coastal dunes, can help improve the management of dune ecosystem services and the restoration of native communities, and can help anticipate the impacts of future beach grass invasions and climate change induced changes to the coast. / Graduation date: 2012 / Access restricted to the OSU Community at author's request from Sept. 22, 2011 - March 22, 2012
|
Page generated in 0.0638 seconds