Spelling suggestions: "subject:"eddy viscosity"" "subject:"eddy iscosity""
1 |
Modelling sediment in suspension in the wave boundary layerPeet, Andrew Herbert January 1999 (has links)
No description available.
|
2 |
Turbulence structure and momentum exchange in compound channel flows with shore ice covered on the floodplainsWang, F., Huai, W., Guo, Yakun, Liu, M. 17 March 2021 (has links)
Yes / Ice cover formed on a river surface is a common natural phenomenon during winter season in cold high latitude northern regions. For the ice-covered river with compound cross-section, the interaction of the turbulence caused by the ice cover and the channel bed bottom affects the transverse mass and momentum exchange between the main channel and floodplains. In this study, laboratory experiments are performed to investigate the turbulent flow of a compound channel with shore ice covered on the floodplains. Results show that the shore ice resistance restricts the development of the water flow and creates a relatively strong shear layer near the edge of the ice-covered floodplain. The mean streamwise velocity in the main channel and on the ice-covered floodplains shows an opposite variation pattern along with the longitudinal distance and finally reaches the longitudinal uniformity. The mixing layer bounded by the velocity inflection point consists of two layers that evolve downstream to their respective fully developed states. The velocity inflection point and strong transverse shear near the interface in the fully developed profile generate the Kelvin-Helmholtz instability and horizontal coherent vortices. These coherent vortices induce quasi-periodic velocity oscillations, while the dominant frequency of the vortical energy is determined through the power spectral analysis. Subsequently, quadrant analysis is used in ascertaining the mechanism for the lateral momentum exchange, which exhibits the governing contributions of sweeps and ejections within the vortex center. Finally, an eddy viscosity model is presented to investigate the transverse momentum exchange. The presented model is well validated through comparison with measurements, whereas the constants α and β appeared in the model need to be further investigated. / National Natural Science Foundation of China (NSFC). Grant Numbers: 52020105006, 11872285: State Key Laboratory of Water Resources and Hydropower Engineering Science (WRHES), Wuhan University. Grant Number: 2018HLG01
|
3 |
Hydraulic Model Study on the Wave-Moved SedimentLiao, Yi-Chun 14 August 2011 (has links)
In the study, an innovative method is developed in 2-D wave flume tests to explore how much sand is set in motion by waves, and how wave-moved sediment is related to wave properties. Wave conditions on an initial sea bed slopes with grain size of about 0.1mm are varying during the experiments. Three initial bottom slopes of 1/30, 1/45, and 1/60 are analyzed in the study. The total number of waves acting is about 39,600 for each wave condition. The accumulated time of generated waves during the study is more than 1,280 hours; this is equivalent to about 2.45 million waves.
The dark sands, along the observing window of the wave tank, of an initial sea bed are replaced by a slice column of white sands. The mixing caused by the waves moved dark and white sands together which generates a layer of grey sands that marks the interface of moved and unmoved white sands on the window. In some cases, three additional white sand columns are merged into the dark sand body perpendicular to the window to verify the uniformity of the moved layer in the wave crest direction. The quantity of the moved sediment is then computed and the wave-moved sediment by each wave is evaluated.
Results show that the wave-moved sediment by each wave is linearly correlated to the wave breaking induced turbulent eddy viscosity, based on Prandtls mixing length model. The corresponding proportional coefficient reaches an asymptotic value as the number of acting waves is more than about 10,000. A Similar trend, but more diverse, is found when the wave-moved sediment is related to a movable parameter defined from the Shields number in which the Komars relation of bottom friction and slope is applied. However, the results indicate that the wave-moved sediment does not linearly correlate with the breaking wave power as proposed by most previous studies.
|
4 |
Verification and validation of the implementation of an Algebraic Reynolds-Stress Model for stratified boundary layersFormichetti, Martina January 2022 (has links)
This thesis studies the implementation of an Explicit Algebraic Reynolds-Stress Model(EARSM) for Atmospheric Boundary Layer (ABL) in an open source ComputationalFluid Dynamics (CFD) software, OpenFOAM, following the guidance provided by thewind company ENERCON that aims to make use of this novel model to improvesites’ wind-field predictions. After carefully implementing the model in OpenFOAM,the EARSM implementation is verified and validated by testing it with a stratifiedCouette flow case. The former was done by feeding mean flow properties, takenfrom OpenFOAM, in a python tool containing the full EARSM system of equationsand constants, and comparing the resulting flux profiles with the ones extracted bythe OpenFOAM simulations. Subsequently, the latter was done by comparing theprofiles of the two universal functions used by Monin-Obukhov Similarity Theory(MOST) for mean velocity and temperature to the results obtained by Želi et al. intheir study of the EARSM applied to a single column ABL, in “Modelling of stably-stratified, convective and transitional atmospheric boundary layers using the explicitalgebraic Reynolds-stress model” (2021). The verification of the model showed minordifferences between the flux profiles from the python tool and OpenFOAM thus, themodel’s implementation was deemed verified, while the validation step showed nodifference in the unstable and neutral stratification cases, but a significant discrepancyfor stably stratified flow. Nonetheless, the reason behind the inconsistency is believedto be related to the choice of boundary conditions thus, the model’s implementationitself is considered validated. Finally, the comparison between the EARSM and the k − ε model showed thatthe former is able to capture the physics of the flow properties where the latter failsto. In particular, the diagonal momentum fluxes resulting from the EARSM reflectthe observed behaviour of being different from each other, becoming isotropic withaltitude in the case of unstable stratification, and having magnitude u′u′ > v′v′ > w′w′ for stably stratified flows. On the other hand, the eddy viscosity assumption used bythe k − ε model computes the diagonal momentum fluxes as being equal to each other.Moreover, the EARSM captures more than one non-zero heat flux component in theCouette flow case, which has been observed to be the case in literature, while the eddydiffusivity assumption used by the k − ε model only accounts for one non-zero heat fluxcomponent.
|
5 |
"Circulação estacionária e estratificação de sal em canais estuarinos parcialmente misturados: simulação com modelos analíticos" / Residual Circulation and Salt Stratification in Partially Mixed Estuarine Channels: Simulation with Analytical ModelsBernardes, Marcos Eduardo Cordeiro 01 February 2001 (has links)
O presente estudo descreve a circulação estacionária e a estratificação de sal no sistema estuarino de Cananéia e no Canal de Bertioga. Os modelos de Hansen & Rattray (1965), Fisher et al. (1972), Prandle (1985) e Miranda (1998) foram escolhidos para a simulação dos perfis verticais do componente longitudinal da velocidade e da salinidade. Os dados experimentais utilizados na calibração desses modelos foram amostrados ao longo de 41 estações fixas de pelo menos 13 horas ou um ciclo de maré semidiurna. Os modelos reproduziram com boa fidelidade condições experimentais bem misturadas e parcialmente misturadas. O gradiente longitudinal de densidade e a descarga de água doce foram as principais forçantes da circulação estacionária e estratificação de sal, em detrimento de uma influência secundária da tensão de cisalhamento do vento. De acordo com a classificação proposta por Hansen & Rattray (1966), o sistema estuarino de Cananéia apresentou condições bem misturadas (Tipo 1a) e parcialmente misturadas antes e depois do rompimento da barragem do Valo Grande, respectivamente. No Canal de Bertioga foram observadas condições parcialmente misturadas (Tipo 2b) nas imediações do Rio Itapanhaú e bem misturadas (Tipo 1b) no restante do canal. Os coeficientes teóricos de viscosidade turbulenta foram similares aos calculados experimentalmente por Mesquita et al. (1992). / The present study describes the stationary circulation and salinity stratification at Cananéia estuarine system and Bertioga Channel. The models of Hansen & Rattray (1965), Fisher et al. (1972), Prandle (1985) and Miranda (1998) were selected for the simulation of vertical profiles of the longitudinal component of velocity and salinity. The experimental data set used for the calibration of these models were sampled in 41 anchored stations, for at least 13 hours or a semidiurnal tidal cycle. For well mixed and partially mixed conditions, theoretical results and experimental data were in close agreement. The longitudinal density gradient and the river flow were the most important forcing for the stationary circulation and salt stratification. The wind stress had a secondary importance. According to the classification of Hansen & Rattray (1966), Cananéia estuarine system presented well mixed conditions (Type 1a) and partially mixed conditions (Type 2b), before and after the destruction of the Valo Grande dam, respectively. The Bertioga Channel presented partially mixed conditions (Type 2b) next to the Itapanhaú River and well mixed conditions (Type 1b) in other along-channel positions. The theoretical turbulent viscosity coefficients were similar to those calculated by Mesquita et al. (1992).
|
6 |
Thermal-hydraulic analysis of gas-cooled reactor core flowsKeshmiri, Amir January 2010 (has links)
In this thesis a numerical study has been undertaken to investigate turbulent flow and heat transfer in a number of flow problems, representing the gas-cooled reactor core flows. The first part of the research consisted of a meticulous assessment of various advanced RANS models of fluid turbulence against experimental and numerical data for buoyancy-modified mixed convection flows, such flows being representative of low-flow-rate flows in the cores of nuclear reactors, both presently-operating Advanced Gas-cooled Reactors (AGRs) and proposed ‘Generation IV’ designs. For this part of the project, an in-house code (‘CONVERT’), a commercial CFD package (‘STAR-CD’) and an industrial code (‘Code_Saturne’) were used to generate results. Wide variations in turbulence model performance were identified. Comparison with the DNS data showed that the Launder-Sharma model best captures the phenomenon of heat transfer impairment that occurs in the ascending flow case; v^2-f formulations also performed well. The k-omega-SST model was found to be in the poorest agreement with the data. Cross-code comparison was also carried out and satisfactory agreement was found between the results.The research described above concerned flow in smooth passages; a second distinct contribution made in this thesis concerned the thermal-hydraulic performance of rib-roughened surfaces, these being representative of the fuel elements employed in the UK fleet of AGRs. All computations in this part of the study were undertaken using STAR-CD. This part of the research took four continuous and four discrete design factors into consideration including the effects of rib profile, rib height-to-channel height ratio, rib width-to-height ratio, rib pitch-to-height ratio, and Reynolds number. For each design factor, the optimum configuration was identified using the ‘efficiency index’. Through comparison with experimental data, the performance of different RANS turbulence models was also assessed. Of the four models, the v^2-f was found to be in the best agreement with the experimental data as, to a somewhat lesser degree were the results of the k-omega-SST model. The k-epsilon and Suga models, however, performed poorly. Structured and unstructured meshes were also compared, where some discrepancies were found, especially in the heat transfer results. The final stage of the study involved a simulation of a simplified 3-dimensional representation of an AGR fuel element using a 30 degree sector configuration. The v^2-f model was employed and comparison was made against the results of a 2D rib-roughened channel in order to assess the validity and relevance of the precursor 2D simulations of rib-roughened channels. It was shown that although a 2D approach is extremely useful and economical for ‘parametric studies’, it does not provide an accurate representation of a 3D fuel element configuration, especially for the velocity and pressure coefficient distributions, where large discrepancies were found between the results of the 2D channel and azimuthal planes of the 3D configuration.
|
7 |
The development and application of two-time-scale turbulence models for non-equilibrium flowsKlein, Tania S. January 2012 (has links)
The reliable prediction of turbulent non-equilibrium flows is of high academic and industrial interest in several engineering fields. Most turbulent flows are often predicted using single-time-scale Reynolds-Averaged-Navier-Stokes (RANS) turbulence models which assume the flows can be modelled through a single time or length scale which is an admittedly incorrect assumption. Therefore they are not expected to capture the lag in the response of the turbulence in non-equilibrium flows. In attempts to improve prediction of these flows, by taking into consideration some features of the turbulent kinetic energy spectrum, the multiple-time-scale models arose. A number of two-scale models have been proposed, but so far their use has been rather limited.This work thus focusses on the development of two-time-scale approaches. Two two-time-scale linear-eddy-viscosity models, referred to as NT1 and NT2 models, have been developed and the initial stages of the development of two-time-scale non-linear-eddy-viscosity models are also reported. The models' coefficients have been determined through asymptotic analysis of decaying grid turbulence, homogeneous shear flows and the flow in a boundary layer in local equilibrium. Three other important features of these models are that there is consistent partition of the large and the small scales for all above limiting cases, model sensitivity to the partition and production rate ratios and sensitivity of the eddy viscosity sensitive to the mean strain rates.The models developed have been tested through computations of a wide range of flows such as homogeneous shear and normally strained flows, fully developed channel flows, zero-pressure-gradient, adverse-pressure-gradient, favourable-pressure-gradient and oscillatory boundary layer flows, fully developed oscillatory and ramp up pipe flows and steady and pulsated backward-facing-step flows.The proposed NT1 and NT2 two-scale models have been shown to perform well in all test cases, being, among the benchmarked models tested, the models which best performed in the wide range of dimensionless shear values of homogeneous shear flows, the only linear-eddy-viscosity models which predicted well the turbulent kinetic energy in the normally strained cases and the only models which showed satisfactory sensitivity in predicting correctly the reattachment point in the unsteady backward facing step cases with different forcing frequencies. Although the development of the two-time-scale non-linear-eddy-viscosity models is still in progress, the interim versions proposed here have resulted in predictions of the Reynolds normal stresses similar to those of much more complex models in all test cases studied and in predictions of the turbulent kinetic energy in normally strained flows which are better than those of the other models tested in this study.
|
8 |
"Circulação estacionária e estratificação de sal em canais estuarinos parcialmente misturados: simulação com modelos analíticos" / Residual Circulation and Salt Stratification in Partially Mixed Estuarine Channels: Simulation with Analytical ModelsMarcos Eduardo Cordeiro Bernardes 01 February 2001 (has links)
O presente estudo descreve a circulação estacionária e a estratificação de sal no sistema estuarino de Cananéia e no Canal de Bertioga. Os modelos de Hansen & Rattray (1965), Fisher et al. (1972), Prandle (1985) e Miranda (1998) foram escolhidos para a simulação dos perfis verticais do componente longitudinal da velocidade e da salinidade. Os dados experimentais utilizados na calibração desses modelos foram amostrados ao longo de 41 estações fixas de pelo menos 13 horas ou um ciclo de maré semidiurna. Os modelos reproduziram com boa fidelidade condições experimentais bem misturadas e parcialmente misturadas. O gradiente longitudinal de densidade e a descarga de água doce foram as principais forçantes da circulação estacionária e estratificação de sal, em detrimento de uma influência secundária da tensão de cisalhamento do vento. De acordo com a classificação proposta por Hansen & Rattray (1966), o sistema estuarino de Cananéia apresentou condições bem misturadas (Tipo 1a) e parcialmente misturadas antes e depois do rompimento da barragem do Valo Grande, respectivamente. No Canal de Bertioga foram observadas condições parcialmente misturadas (Tipo 2b) nas imediações do Rio Itapanhaú e bem misturadas (Tipo 1b) no restante do canal. Os coeficientes teóricos de viscosidade turbulenta foram similares aos calculados experimentalmente por Mesquita et al. (1992). / The present study describes the stationary circulation and salinity stratification at Cananéia estuarine system and Bertioga Channel. The models of Hansen & Rattray (1965), Fisher et al. (1972), Prandle (1985) and Miranda (1998) were selected for the simulation of vertical profiles of the longitudinal component of velocity and salinity. The experimental data set used for the calibration of these models were sampled in 41 anchored stations, for at least 13 hours or a semidiurnal tidal cycle. For well mixed and partially mixed conditions, theoretical results and experimental data were in close agreement. The longitudinal density gradient and the river flow were the most important forcing for the stationary circulation and salt stratification. The wind stress had a secondary importance. According to the classification of Hansen & Rattray (1966), Cananéia estuarine system presented well mixed conditions (Type 1a) and partially mixed conditions (Type 2b), before and after the destruction of the Valo Grande dam, respectively. The Bertioga Channel presented partially mixed conditions (Type 2b) next to the Itapanhaú River and well mixed conditions (Type 1b) in other along-channel positions. The theoretical turbulent viscosity coefficients were similar to those calculated by Mesquita et al. (1992).
|
9 |
Insights into CFD modelling of water hammerKumar, M.R.A., Pu, Jaan H., Hanmaiahgari, P.R., Lambert, M.F. 12 October 2024 (has links)
Yes / A problem with 1-D water hammer modelling is in the application of accurate unsteady friction. Moreover, investigating the time response of fluid dynamics and unsteady turbulence structures during the water hammer is not possible with a 1-D model. This review article provides a summary of 1-D modelling using the recent finite volume approach and the discussion extends to a quasi-2-D model and historical developments as well as recent advancements in 3-D CFD simulations of water hammer. The eddy viscosity model is excellent in capturing pressure profiles but it is computationally intensive and requires more computational time. This article reviews 3-D CFD simulations with sliding mesh, an immersed solid approach, and dynamic mesh approaches for modelling valve closures. Despite prediction accuracy, a huge computational time and high computer resources are required to execute 3-D flow simulations with advanced valve modelling techniques. Experimental validation shows that a 3-D CFD simulation with a flow rate reduction curve as a boundary condition predicted accurate pressure variation results. Finally, a brief overview of the transient flow turbulence structures for a rapidly accelerated and decelerated pipe flow using DNS (Direct numerical simulation) data sets is presented. Overall, this paper summarises past developments and future scope in the field of water hammer modelling using CFD.
|
10 |
[en] PERFORMANCE EVALUATION OF NONLINEAR EXPLICIT ALGEBRAIC REYNOLDS STRESS MODELS TO PREDICT CHANNEL FLOWS / [pt] AVALIAÇÃO DE DESEMPENHO DE MODELOS EXPLÍCITOS ALGÉBRICOS NÃO LINEARES DE TENSÕES DE REYNOLDS PARA PREVISÃO DE ESCOAMENTOS EM CANAISFELIPE WARWAR MURAD 01 November 2018 (has links)
[pt] Os modelos mais populares para solucionar escoamentos turbulentos são baseados no esquema RANS (Reynolds Average Navier Stokes) que necessita de fechamento para relacionar o tensor de tensões de Reynolds com os tensores médios cinemáticos. A solução clássica é a aproximação por Bussinesq que assume uma relação linear entre a parte deviatórica do Tensor de Reynolds e o tensor das taxas de deformação. Trabalhos anteriores mostraram que uma relação não linear entre o tensor das taxas de deformação pode melhorar a predição do modelo. No presente trabalho, primeiramente é realizada uma avaliação entre modelos lineares presentes na literatura seguido de uma análise de três modelos de ordem elevada que expandem a base tensorial para incluir tensores ortogonais. Duas adimensionalizações, uma com a energia cinética turbulenta e taxa de dissipação e outra com energia cinética turbulenta e intensidade do tensor de deformação, haviam sido propostas. As previsões dos modelos são comparados com dados DNS para um canal e para uma gama variada de número de Reynolds. Todos os modelos são implementados na plataforma aberta OpenFoam. Predições razoáveis para a componente cisalhante de todos os modelos foram obtidas quando comparadas com os dados DNS. Entretanto, modelos não lineares provaram superioridade na predição das outras componentes. Também foi observado que o modelo não linearmente dependente do tensor taxa de deformação e o tensor não persistencia das deformações foi o que melhor representou os campos providos por DNS. / [en] The most popular models to solve turbulent flows are based on the Reynolds Average Navier Stokes approach (RANS), which needs closure equations to relate the Reynolds stress tensor to the mean kinematic tensors. The classical approach is the Boussinesq approximation that assumes a linear relation between the deviatoric part of the Reynolds stress tensor, and the rate of strain tensor. Previous works have shown, that the non-linear dependence on the rate of strain tensor can improve the model predictions. At the present work, first an evaluation of linear models available in the literature is performed, followed by the analysis of three higher order methods, that expands the tensorial basis to include other objective orthogonal tensors. Two different nondimensionalization, one with the turbulent kinetic energy and dissipation rate and the other one with turbulent kinetic energy and the intensity of the rate of strain, had also been proposed for the models. The performance of the new models is assessed by comparing their numerical predictions to available channel flow and for a broad range of Reynolds Numbers. All models are implemented in the open source platform OpenFOAM. Reasonable predictions of the Reynolds shear component of all models were obtained when compared with the DNS data. However, the non-linear models proved superior in the prediction of the other components. It was also observed that the model which depends nonlinearly with the rate of strain and linearly with the non-persistence of strain was the one that best represented the DNS data field.
|
Page generated in 0.0643 seconds