• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 9
  • 7
  • 2
  • 1
  • Tagged with
  • 65
  • 65
  • 60
  • 17
  • 15
  • 15
  • 14
  • 14
  • 12
  • 11
  • 11
  • 11
  • 11
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Numerical study of ignition and inter-sector flame propagation in gas turbine / Étude numérique de l'allumage et de la propagation inter-secteur dans les turbines à gaz

Esclapez, Lucas 22 May 2015 (has links)
Pour des raisons de sécurité, les moteurs aéronautiques doivent pouvoir redémarrer en vol sur toute leur plage d'opération. Mais les contraintes sur les émissions polluantes nécessitent le développement de nouvelles chambres de combustion dont la conception peut détériorer les capacités d'allumage du moteur. Afin d'améliorer la compréhension du processus d'allumage et d'aider à l'optimisation de la conception, les recherches actuelles combinent les études expérimentales de plus en plus complexes et les simulation numériques hautes fidélités. Dans ce travail, l'étude numérique du processus d'allumage des chambres de combustion aéronautiques, de l'étincelle à la propagation azimutale de la flamme, est conduite avec plusieurs objectifs: améliorer la robustesse et la confiance de l'outil LES pour l'étude de l'allumage, étudier les mécanismes qui affectent l'allumage dans des conditions représentatives des conditions réelles et enfin améliorer les méthodes bas-ordre pour la prédiction des performances d'allumage. Dans une première partie, la SGE d'un monobruleur installé au CORIA permet de mettre en évidence les bons résultats de la LES et de construire une base de données pour l'analyses des mécanismes d'extinction. Ces données sont aussi utilisées pour développer une méthodologie permettant de prédire les performances d'allumage à bas coût en utilisant les résultats d'une SGE non-réactive. Dans une seconde partie, la propagation inter-secteur est investiguée par l'étude de deux cas expérimentaux et la SGE est capable de reproduire les modes de propagation mais aussi les temps d'allumage avec précision. Sur la bases de ces bons résultats, une analyse plus fine de la simulation permet d'identifier les mécanismes qui contrôlent la propagation de la flamme. / For safety reasons, in-flight relight of the engine must be guaranteed over a wide range of operating conditions but the increasing stringency of pollutant emission constraints requires the development of new aero-engine combustor whose design might be detrimental to the ignition capability. To improve the knowledge of the ignition process in aeronautical gas turbines and better combine conflicting technological solutions, current research relies on both complex experimental investigation and high fidelity numerical simulations. In this work, numerical study of the ignition process in gas turbines from the energy deposit to the light-around is performed with several objectives: increase the level of confidence of Large Eddy Simulations tool for the analysis of the ignition process, investigate the mechanisms controlling ignition in conditions representative of realistic aeronautical gas turbine flows and improve the low-order methodologies for the prediction of ignition performance. In a first part, LES of the single burner installed at CORIA (France) is carried out and allows to highlight the LES accuracy and to build a database on which the main mechanisms controlling the ignition success are identified. Based on these results, a methodology is developed to predict the ignition performance at a low computational cost using the non-reacting flow statistics only. In a second part, the light-around process is studied on two experimental set-ups and the very good agreement of the LES results with experiments is the starting point from an analysis of the mechanisms driving the flame propagation process.
42

Flow around porous barriers: fundamental flow physics and applications

Basnet, Keshav 01 July 2015 (has links)
Investigating flow and turbulence structure around a barrier mounted on the ground or placed in its vicinity is a fundamental problem in wind engineering because of many practical applications related to protection against adverse effects induced by major wind storms (e.g., hurricanes) and snow events (e.g., snow fences used to reduce adverse effects of snow drifting on the roads). In this work the focus is on the case when the obstacle/barrier is porous and the shape of the obstacle is close to a high-aspect-ratio rectangular cylinder situated in the vicinity of the ground. The study employs a range of numerical and experimental techniques to achieve this goal that include 3D LES and 2D RANS numerical simulations, and RTK survey and 3D photogrammetry techniques to measure ground elevations and snow deposits in the field. In the first part of the study, high-resolution large eddy simulations are used to understand the fundamental flow physics of flow past 2D solid and porous vertical plates with a special focus on describing the unsteady wind loads on the obstacle, vortical structure of the turbulent wake, spectral content of the wake, the separated shear layers and of the characteristics of the large-scale vortex shedding behind the plate, if present. Results show that LES can accurately predict mean flow and turbulence statistics around solid/porous cylinders. Then, a detailed parametric study of flow past vertical solid and porous plates situated in the vicinity of a horizontal bed is performed for the purpose of understanding changes in the mean flow structure, turbulence statistics and dynamics of large scale coherent structures as a function of the main nondimensional geometrical parameters (bottom gap for solid and porous plates, and porosity and average hole size of porous plates) and flow variables (e.g., bed roughness) that affect the wake flow. In particular, the LES flow fields allowed clarifying how the interactions between the bottom and the top separated shear layers change with increasing bottom gap and what is the effect of the bleeding flow on the interactions between the separated shear layers that determine the coherence of the large-scale eddies at large distances from the wake. In the second part of the thesis, a novel methodology based on field monitoring of the snow deposits and RANS numerical simulations is proposed to improve the design of snow fences and in particular the design of lightweight plastic snow fences that are commonly used to protect roads in the US Midwest against the snow drifting. The goal of the design optimization procedure is to propose a snow fence design that can retain a considerable amount of snow within a shorter downwind distance compared to fences of standard design. A major contribution of the present thesis was the development of a novel non-intrusive image-based technique that can be used to quantitatively estimate the temporal evolution of the volume of snow trapped by a fence over long periods of time. This technique is based on 3-D close range photogrammetry. Results showed that this technique can produce estimations of the snow deposits of comparable accuracy to that given by commonly used methods. This is the first application of this type of techniques to measurements of the snow deposits.
43

Numerical modelling of an air-helium buoyant jet in a two vented enclosure / Modélisation numérique d'un jet flottant air-hélium dans une cavité avec deux évents

Saikali, Elie 08 March 2018 (has links)
Nous cherchons à modéliser numériquement un jet flottant air-hélium dans une cavité avec deux ouvertures à partir de simulations aux grandes échelles (LES) et de simulations numériques directes (DNS). La configuration considérée est basée sur une étude expérimentale menée au CEA de Saclay reproduisant une fuite d'hydrogène en environnement confiné. La dimension de la cavité a été choisie pour permettre une transition laminaire-turbulent intervenant environ à la mi-hauteur de la cavité. Cette étude porte principalement sur trois points majeurs : l'influence des conditions aux limites sur le développement du jet et son interaction avec l'environnement extérieur, la validité du modèle numérique qui est analysée en comparant la distribution de vitesse obtenue numériquement aux mesures expérimentales (PIV) et, enfin, la compréhension de la distribution air-hélium et le phénomène de stratification qui s'établit à l'intérieur de la cavité. Nous observons dans un premier temps que des conditions limites de pression constante appliquées directement au ras des évents conduisent à une sous-estimation du débit volumique d'air entrant dans la cavité et donc à une surestimation de la masse de l'hélium à l'intérieur de la cavité, ce qui n'est pas acceptable dans un contexte d'évaluation du risque hydrogène. En revanche, la prise en compte, dans le domaine de calcul, d'une région extérieure à la cavité prédit correctement le flux d'air entrant. Les résultats numériques sont alors en bon accord avec les données PIV. Il a été montré que les prédictions de la DNS, par rapport à la LES, concordent mieux avec les mesures de vitesse par PIV. Le champ de concentration prédit numériquement présente une couche homogène en haut de la cavité, dont la concentration est en accord avec le modèle théorique de Linden et al. 1990. Cependant, sa position et son épaisseur ne correspondent pas au modèle. Ceci est principalement dû aux interactions directes entre le jet flottant et, d'une part, avec les limites solides de la cavité et d'autre part, avec l'environnement extérieur. L'analyse statistique concernant la production de la flottabilité de l'énergie cinétique turbulente (TKE) a permis d'identifier les limites du jet flottant. / We present numerical results from large eddy simulations (LES) and coarse direct numerical simulations (DNS) of an air-helium buoyant jet rising in a two vented cavity. The geometrical configuration mimics the helium release experimental set-up studied at CEA Saclay in the framework of security assessment of hydrogen-based systems with an indoor usage. The dimension of the enclosure was chosen to ensure a laminar-turbulent transition occurring at about the middle height of the cavity. This study focuses mainly on three key points : the influence of the boundary conditions on the jet development and its interaction with the exterior environment, the validity of the numerical model which is analyzed by comparing the numerical velocity distribution versus the measured particle image velocimetry (PIV) ones, and finally understanding the distribution of air-helium and the stratification phenomenon that takes place inside the cavity. We observe at first that applying constant pressure outlet boundary conditions directly at the vent surfaces underestimates the volumetric flow rate of air entering the enclosure and thus overestimate the helium mass inside the cavity. On the contrary, modelling an exterior region in the computational domain better predicts the air flow-rate entrance and numerical results matches better with the experimental PIV data. It has been figured out that the coarse DNS predictions match better with the velocities PIV measurements, compared to the LES. Numerical prediction of the helium field depicts a homogeneous layer formed at the top of the cavity, with a concentration in good agreement with the theoretical model of Linden et al. 1990. However, the position and the thickness of the layer do not correspond to the theory. This is mainly due to the direct interactions between the buoyant jet and both the solid boundaries of the cavity and the exterior environment. Statistical analysis regarding the buoyancy production of the turbulent kinetic energy (TKE) served to identify the limits of the buoyant jet.
44

Theory and simulation of separated boundary layers and turbulence induced secondary motion

RAIESI, Hassan 30 November 2010 (has links)
Among the different types of flows encountered in practical applications, the physics of turbulent separated flows and turbulence induced secondary motion are not fully understood despite the large amount of previous experimental and numerical work. The objectives of this work are to study theoretically and computationally the conditions at the separation and reattachment point, the numerical simulation of turbulence induced secondary motion in non-circular ducts, and to provide a comprehensive test of different RANS models of these types of flow. In a theoretical study of flow separation, a Lagrangian approach was first used to derive an Eulerian criterion, which associates separation and reattachment points to a critical point in the eigenvalues of the Cauchy-Green tensor. A turbulent separated boundary layer under the influence of an adverse pressure gradient was simulated using DNS and LES techniques. A bootstrapping method was used to obtain high fidelity results at a relatively high Reynolds number with which the performance of some of the most commonly used eddy-viscosity turbulence models was evaluated. The DNS and LES results were used to assess the consistency of the different terms in the k−e , ζ −f , k −ω and Spalart-Allmaras models. Different wall-modelling techniques were employed for the calculation of separated boundary layers. The exact values of the modelled terms were calculated using the reference DNS and LES dataset. These results were used for both a priori and a posteriori tests. It was determined that the eddy-viscosity assumption works well, and that anisotropic effects are not significant in separated boundary layer. For the secondary flow calculation in non-circular ducts, direct numerical simulations of turbulent flow in square and skewed ducts were carried out to determine the effect of the duct (rhombus) included angle on both the mean and turbulence energy budgets. Two skewed ducts, with included angles of 30 and 60 degrees, were simulated. The capability of different turbulence models to predict the secondary velocity field was investigated. Results obtained from a non-linear stress-strain constitutive relation was found to be fairly accurate for the flows at the range of Reynolds number considered in this study. / Thesis (Ph.D, Mechanical and Materials Engineering) -- Queen's University, 2010-11-26 13:52:18.361
45

Wind-turbine wake flows - Effects of boundary layers and periodic disturbances

Odemark, Ylva January 2014 (has links)
The increased fatigue loads and decreased power output of a wind turbine placed in the wake of another turbine is a well-known problem when building new wind-power farms and a subject of intensive research. These problems are caused by the velocity gradients and high turbulence levels present in the wake of a turbine. In order to better estimate the total power output and life time of a wind-power farm, knowledge about the development and stability of wind-turbine wakes is crucial. In the present thesis, the flow field around small-scale model wind turbines has been investigated experimentally in two wind tunnels. The flow velocity was measured with both hot-wire anemometry and particle image velocimetry. To monitor the turbine performance, the rotational frequency, the power output and the total drag force on the turbine were also measured. The power and thrust coefficients for different tip-speed ratios were calculated and compared to the blade element momentum method, with a reasonable agreement. The same method was also used to design and manufacture new turbine blades, which gave an estimate of the distribution of the lift and drag forces along the blades. The influence of the inlet conditions on the turbine and the wake properties was studied by subjecting the turbine to both uniform in flow and different types of boundary layer in flows. In order to study the stability and development of the tip vortices shed from the turbine blades, a new experimental setup for phase-locked measurements was constructed. The setup made it possible to introduce perturbations of different frequencies and amplitudes, located in the rear part of the nacelle. With a newly developed method, it was possible to characterize the vortices and follow their development downstream, using only the streamwise velocity component. Measurements were also performed on porous discs placed in different configurations. The results highlighted the importance of turbine spacings. Both the measurements on the turbine and the discs were also used to compare with large eddy simulations using the actuator disc method. The simulations managed to predict the mean velocity fairly well in both cases, while larger discrepancies were seen in the turbulence intensity. / <p>QC 20140424</p>
46

A new two-scale model for large eddy simulation of wall-bounded flows

Gungor, Ayse Gul 14 May 2009 (has links)
A new hybrid approach to model high Reynolds number wall-bounded turbulent flows is developed based on coupling the two-level simulation (TLS) approach in the inner region with conventional large eddy simulation (LES) away from the wall. This new approach is significantly different from previous near-wall approaches for LES. In this hybrid TLS-LES approach, a very fine small-scale (SS) mesh is embedded inside the coarse LES mesh in the near-wall region. The SS equations capture fine-scale temporal and spatial variations in all three cartesian directions for all three velocity components near the wall. The TLS-LES equations are derived based on defining a new scale separation operator. The TLS-LES equations in the transition region are obtained by blending the TLS large-scale and LES equations. A new incompressible parallel flow solver is developed that accurately and reliably predicts turbulent flows using TLS-LES. The solver uses a primitive variable formulation based on an artificial compressibility approach and a dual time stepping method. The advective terms are discretized using fourth-order energy conservative finite differences. The SS equations are also integrated in parallel, which reduces the overall cost of the TLS-LES approach. The TLS-LES approach is validated and investigated for canonical channel flows, channel flow with adverse pressure gradient and asymmetric plane diffuser flow. The results suggest that the TLS-LES approach yields very reasonable predictions of most of the crucial flow features in spite of using relatively coarse grids.
47

Development of Analytically Reduced Chemistries (ARC) and applications in Large Eddy Simulations (LES) of turbulent combustion / Développement de Chimies Analytiquement Réduites (CAR) et applications à la Simulation aux Grandes Échelles (SGE) de la combustion turbulente

Felden, Anne 30 June 2017 (has links)
L'impact environnemental du trafic aérien fait maintenant l'objet d'une réglementation qui tend à se sévériser. Dans ce contexte, les industriels misent sur l'amélioration des technologies afin de réduire la consommation de carburant et l'émission de polluants. Ces phénomènes dépendent en grande partie des chemins réactionnels sous-jacents, qui peuvent s'avérer très complexes. La Simulation aux Grandes Échelles (SGE) est un outil intéressant afin d'étudier ces phénomènes pour un coût de calcul qui reste raisonnable. Cependant, les processus chimiques, s'ils sont considérés sans simplification, font intervenir des centaines d'espèces aux temps caractéristiques très différents au sein de processus non-linéaires qui induisent une forte raideur dans le système d'équations, et un coût de calcul prohibitif. Permettant de s'absoudre de ces problèmes tout en conservant une bonne capacité de prédiction des polluants, les Chimies Analytiquement Réduites (CAR) font l'objet d'une attention grandissante au sein de la communauté. Les CAR permettent de conserver la physique du problème considéré, en conservant les espèces et voies réactionnelles les plus importantes. Grâce à l'évolution toujours croissante des moyens de calculs, les CAR sont appliqués dans des configurations de plus en plus complexes. Les travaux de thèse ont principalement portés sur deux sujets. Premièrement, une étude poussée des techniques et outils permettant une réduction efficace et systématique de chimies détaillées. L'outil de réduction multiétapes YARC est retenu et exhaustivement employé dans la dérivation et la validation d'une série de CAR préservant la description de la structure de flamme. Ensuite, une investigation de la faisabilité et des bénéfices qu'apportent l'utilisation de CAR en LES, comparé a des approches plus classiques, sur des cas tests de complexité croissante. La première configuration étudiée est une chambre de combustion partiellement pré-mélangée brûlant de l'éthylène, étudiée expérimentalement au DLR. Différentes modélisations de la chimie sont considérées, dont un CAR développé spécifiquement pour ce cas test, et les résultats démontrent qu'une prise en compte des interactions flamme-écoulement est cruciale pour une prédiction juste de la structure de la flamme et des niveaux de suies. La seconde configuration est un brûleur diphasique, avec une injection directe pauvre, brûlant du Jet-A2. Dans cette étude, une approche novatrice pour la prise en compte de la complexité du fuel réel (HyChem) est considérée, permettant la dérivation d’un CAR. Les résultats sont excellents et valident la méthodologie tout en fournissant une analyse précieuse des interactions flamme-spray et de la formation de polluants (NOx) dans des flammes à la structure complexe. / Recent implementation of emission control regulations has resulted in a considerable demand from industry to improve the efficiency while minimizing the consumption and pollutant emissions of the next generation of aero-engine combustors. Those phenomena are shown to strongly depend upon the underlying complex chemical pathways and their interaction with turbulence. Large Eddy Simulation (LES) is an attractive tool to address those issues with high accuracy at a reasonable computing cost. However, the computation of accurate combustion chemistry remains a challenge. Indeed, combustion proceeds through complex and highly non-linear processes that involve up to hundreds of different chemical compounds, which significantly increases the computational time and often induces stiffness in the resolved equations. As a mean to circumvent these drawbacks while retaining the necessary kinetics for the prediction of pollutants, Analytically Reduced Chemistry (ARC) has recently received high interest in the Computational Fluid Dynamics (CFD) community. ARC is a strategy for the description of combustion chemistry where only the most important species and reactions are retained, in a "physically-oriented way". ARC is on the verge of becoming affordable at a design stage, thanks to the continuously increasing available computational resources. The goal of the present work is twofold. A first objective is to test and validate efficient techniques and tools by which detailed chemistries are reduced to an LES-compliant format. To do so, the multi-step reduction tool YARC is selected and employed to derive and validate a series of ARC specifically designed to retrieve correct flame structures. A second objective is to investigate the overall feasibility and benefits of using ARC, combined to the Thickened Flame model (DTFLES), in performing LES of configurations of increasing complexity. The first configuration is a sooting swirl-stabilized non-premixed aero-engine combustor experimentally studied at DLR, burning ethylene. LES of this configuration is performed with the AVBP solver, in which ARC has been implemented. By comparison with global chemistry and tabulated chemistry, results highlight the importance of accurately capturing the flow-flame interactions for a good prediction of pollutants and soot. The second configuration is a swirled twophase flow burner featuring a lean direct injection system and burning Jet-A2. A novel methodology to real fuel modeling (HyChem approach) is employed, which allows subsequent ARC derivation. The excellent results in comparison with measurements constitute an additional validation of the methodology, and provide valuable qualitative and quantitative insights on the flame-spray interactions and on the pollutant formation (NOx) mechanisms in complex flame configurations.
48

A Numerical Study of Changes to Flow Organization and their Prognostic Measures

Kamin, Manu January 2017 (has links) (PDF)
Flow induced self-oscillations cause acoustic pressure oscillations of large amplitude in pipe flows. If Reynolds number is treated as a parameter, these floinduced oscillations occur only at discrete and critical values of Reynolds number. However, for a small range of Reynolds numbers around such a critical value, such periodic oscillations may appear intermittently. If intermittency, which is a precursor to these self-oscillations, can be detected, prediction of an impending instability may be possible. In experiments done by Vineeth and Sujith (Int. J. Aeroacoustics, 2016) on flow in a duct orifice arrangement, where flow enters through the duct inlet, and leaves into the atmosphere through the orifice exit, “whistling” was observed at a Reynolds number of 4200 (based on the orifice thickness and flow speed within the orifice), where large amplitude pressure oscillations were observed. At slightly lower Reynolds numbers, bursts of relatively smaller amplitudes of pressure oscillations were observed to appear intermittently. For a similar configuration, Large Eddy Simulations (LES) have been carried out with explicit filtering as a sub­ grid scale model here. Both whistling and intermittency are observed in the simulations. As air flows from the duct into the orifice, it turns sharply around the corner at the duct­ orifice interface. Due to this sharp turn, flow separation occurs, and hence, a shear layer is formed at the mouth of the orifice. The mechanism of whistling is found to be this shear layer within the orifice flapping about and hitting the trailing edge of the orifice periodically, thus causing the shear layer to break and roll up into a vortex. At Reynolds numbers where intermittency is observed, the shear layer is found to very mildly come in contact with the edges of the orifice walls, thus disturbing it. In the simulations, time series data of pressure are recorded at various probe locations. In a given time series, if scale invariance behaviour exists, it can be quantified by measuring the Hurst exponent. The numerical value of the Hurst exponent is an index of “long range or short range dependence” in a time series. Hurst exponent is measured in the time series data obtained. It is found to drop to zero as the flow approaches the state of a self-sustained oscillation, since the growth rates of all the long term as well as short term trends in the time series vanish. A loss of multifractality in the time series is also observed as the flow approaches whistling. As a part of the this thesis, new, split high resolution schemes of high order are designed following the Hixon Turmel Proposal.
49

Study of the dynamics of conductive fluids in the presence of localised magnetic fields: application to the Lorentz force flowmeter

Viré, Axelle 02 September 2010 (has links)
When an electrically conducting fluid moves through a magnetic field, fluid mechanics and electromagnetism are coupled.<p>This interaction is the object of magnetohydrodynamics, a discipline which covers a wide range of applications, from electromagnetic processing to plasma- and astro-physics.<p><p>In this dissertation, the attention is restricted to turbulent liquid metal flows, typically encountered in steel and aluminium industries. Velocity measurements in such flows are extremely challenging because liquid metals are opaque, hot and often corrosive. Therefore, non-intrusive measurement devices are essential. One of them is the Lorentz force flowmeter. Its working principle is based on the generation of a force acting on a charge, which moves in a magnetic field. Recent studies have demonstrated that this technique can measure efficiently the mean velocity of a liquid metal. In the existing devices, however, the measurement depends on the electrical conductivity of the fluid. <p><p>In this work, a novel version of this technique is developed in order to obtain measurements that are independent of the electrical conductivity. This is particularly appealing for metallurgical applications, where the conductivity often fluctuates in time and space. The study is entirely numerical and uses a flexible computational method, suitable for industrial flows. In this framework, the cost of numerical simulations increases drastically with the level of turbulence and the geometry complexity. Therefore, the simulations are commonly unresolved. Large eddy simulations are then very promising, since they introduce a subgrid model to mimic the dynamics of the unresolved turbulent eddies. <p><p>The first part of this dissertation focuses on the quality and reliability of unresolved numerical simulations. The attention is drawn on the ambiguity that may arise when interpretating the results. Owing to coarse resolutions, numerical errors affect the performances of the discrete model, which in turn looses its physical meaning. In this work, a novel implementation of the turbulent strain rate appearing in the models is proposed. As opposed to its usual discretisation, the present strain rate is in accordance with the discrete equations of motion. Two types of flow are considered: decaying turbulence located far from boundaries, and turbulent flows between two parallel and infinite walls. Particular attention is given to the balance of resolved kinetic energy, in order to assess the role of the model.<p><p>The second part of this dissertation deals with a novel version of Lorentz force flowmeters, consisting in one or two coils placed around a circular pipe. The forces acting on each coil are recorded in time as the liquid metal flows through the pipe. It is highlighted that the auto- or cross-correlation of these forces can be used to determine the flowrate. The reliability of the flowmeter is first investigated with a synthetic velocity profile associated to a single vortex ring, which is convected at a constant speed. This configuration is similar to the movement of a solid rod and enables a simple analysis of the flowmeter. Then, the flowmeter is applied to a realistic three-dimensional turbulent flow. In both cases, the influence of the geometrical parameters of the coils is systematically assessed. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
50

La fragmentation du paysage : impact sur l'écoulement atmosphérique et la stabilité au vent des peuplements forestiers / Fragmented landscape : impact on atmospheric flow and tree stability

Poette, Christopher 19 December 2016 (has links)
A l’heure actuelle, seuls des facteurs locaux, stationnels, sont considérés pour le calcul des risques liés au vent alors que le vent qui aborde un peuplement forestier est affecté par les surfaces sur lesquelles il vient de passer ; les lisières en particulier jouent un rôle important sur l’écoulement atmosphérique, en contribuant à générer de la turbulence. Dans un paysage fragmenté, constitué d’une mosaïque de surfaces de différentes hauteurs et rugosités, la multiplicité des lisières est ainsi susceptible d’avoir des effets cumulatifs perceptibles à l’échelle régionale, qui pourraient contribuer de manière significative à la fragilité des massifs face à des tempêtes. Certains niveaux de fragmentation semblent susceptibles de conduire à un accroissement des risques en cas de vent violent. Bien que la région de lisière a été étudiée de manière approfondie dans le passé en raison de leur importance pour la détermination des vitesses de vent, des niveaux de turbulence et des échanges entre l’atmosphère et la canopée, il n’y a aucune étude de l’impact de lisières multiples ou de la fragmentation des forêts sur les caractéristiques de la couche limite à l’échelle du paysage. Quelques rares études laissent penser que la fragmentation du paysage pourrait moduler de manière significative la structure turbulente de la couche limite atmosphérique mais ces études concernent des réseaux de brisevents plutôt qu’un ensemble de parcelles forestières. On cherche par conséquent à caractériser les champs de vent et de turbulence pour ces différentes configurations. Pour ce faire, une expérimentation en soufflerie à été réalisée, visant à caractériser l’écoulement sur des maquettes de paysage présentant cinq degrés de fragmentation (L = ~ 5, ~ 10, ~15, ~20, ~30h, où L est la distance entre deux patchs de forêts régulièrement espacés et h est la hauteur de la canopée). Un cas homogène a également été simulé et sert ici de référence. Pour le modèle de canopée choisi, ces expérimentations montrent que l’énergie cinétique turbulente présente dans la basse atmosphère ne passe pas par un maximum pour une valeur de l’espacement intermédiaire comme il était supposé à l’origine. Le cas homogène est la configuration la plus rugueuse. Pour de grands espacements l’influence d’une parcelle ne se fait guère sentir sur la suivante et lorsqu’ils sont faibles l’écoulement ne "ressent" guère les clairières et présente des caractéristiques semblables au cas homogène. Nous avons également évalué un modèle atmosphérique de type "simulation des grandes échelles" à l’aide des données présentées précédemment. Le modèle est capable de reproduire les grandes caractéristiques de la turbulence telles que les vitesses de vent horizontales et verticales, l’énergie cinétique turbulente, les contraintes de Reynolds et les coefficients d’asymétrie horizontale et verticale en tous points du domaine. Cela nous a permis de confirmer la validité des calculs numériques et de simuler l’écoulement sur une plus large gamme de paysages fragmentés. Les résultats démontrent l’importance de l’indice foliaire pour le calcul de la rugosité effective sur une succession de patchs de forêt. / At present only the characteristics of a forest stand and its immediate environment are taken into account in calculating forest wind risk. However, it is known that the wind is strongly affected by the surfaces over which it has previously flowed. Forest edges in particular play an important role in determining the characteristics of the atmospheric flow by generating increased turbulence, triggering the formation of coherent tree scale structures. In a fragmented landscape, consisting of surfaces of different heights and roughness, the multiplicity of edges may have cumulative effects at the regional scale leading to increased forest damage during storms. Flow changes in the atmospheric boundary-layer across surface roughness changes have received extensive study in the past because of their importance in determining velocities, turbulence levels and exchange between the atmosphere and biosphere or ground. There have also been a number of studies across single forest edges both in the field, wind-tunnels and computer models. However, there have been no studies of flow across multiple forest edges or the impact of forest fragmentation on the characteristics of the boundary-layer. The only studies on multiple surface changes have been wind-tunnel examination of the flow though and across multiple wind-breaks. In this thesis we show results from a series of wind tunnel experiments on a range of levels of forest fragmentation. Five gap spacings (L = ~ 5, ~ 10, ~15, ~20, ~30h, where L is the length of the gap and h is the canopy height) were investigated using 3D laser doppler velocimetry in order to assess the effects of fragmented landscapes on mean and turbulent wind characteristics. The fragmentation was two-dimensional with the transition between forest and gaps only being along the wind direction and the forest and gaps were continuous perpendicular to the wind direction. The wind speeds and turbulence characteristics are compared against measurements from a single forest edge in the wind tunnel, which acts as a reference. No enhancement of turbulence formation at a particular level of fragmentation was observed but there was a consistent pattern of wind speed and turbulence back from the first edge of each simulation with the horizontal velocity at tree top increasing and the turbulent kinetic energy decreasing as gap size increased. We also compare mean wind speeds (U and W) and turbulence characteristics (variance in u, v, and w; skewness in U, V, and W; Reynold’s stress, and TKE) at all points in the experimental measurement domain of the wind tunnel with Large Eddy Simulation (LES) results, which allows us to confirm the validity of the LES calculations and to conduct a wider range of experiments than was possible in the wind-tunnel. The results demonstrate the importance of the frontal area index or roughness density of elements (in this case trees) in determining the nature of the flow and the effective roughness of the overall surface. They also show that as the gaps between forest blocks increases the flow transitions (at a gap size between 10 to 15 tree heights) from flow comparable to that over a continuous forest to flow across a set of isolated forest blocks.

Page generated in 0.0851 seconds