• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Self-stabilizing algorithms for graph parameters / Algorithmes auto-stabilisants pour des paramètres de graphes

Neggazi, Brahim 15 April 2015 (has links)
Le concept d'auto-stabilisation a été introduit par Dijkstra en 1973. Un système distribué est auto-stabilisant s'il peut démarrer de n'importe quelle configuration initiale et retrouver une configuration légitime en un temps fini par lui-même et sans aucune intervention extérieure. La convergence est également garantie lorsque le système est affecté par des fautes transitoires, ce qui en fait une approche élégante, non masquante, pour la tolérance aux pannes. L'auto-stabilisation a été étudiée dans divers domaines des systèmes distribués tels que les problèmes de synchronisation de l'horloge, de la communication et les protocoles de routage. Vu l'importance des paramètres de graphes notamment pour l'organisation et l'optimisation des communications dans les réseaux et les systèmes distribués, plusieurs algorithmes auto-stabilisants pour des paramètres de graphe ont été proposés dans la littérature, tels que les algorithmes autostabilisants permettant de trouver les ensembles dominants minimaux, coloration des graphes, couplage maximal et arbres de recouvrement. Dans cette perspective, nous proposons, dans cette thèse, des algorithmes distribués et autostabilisants pour certains problèmes de graphes bien connus, en particulier pour les décompositions de graphes et les ensembles dominants qui n'ont pas encore été abordés avec le concept de l'autostabilisation. Les quatre problèmes majeurs considérés dans cette thèse sont: partitionnement en triangles, décomposition en p-étoiles, Monitoring des arêtes, fort ensemble dominant et indépendant. Ainsi, le point commun entre ces problèmes, est qu'ils sont tous considérés comme des variantes des problèmes de domination et de couplage dans les graphes et leur traitement se fait d'une manière auto-stabilisante / The concept of self-stabilization was first introduced by Dijkstra in 1973. A distributed system is self-stabilizing if it can start from any possible configuration and converges to a desired configuration in finite time by itself without using any external intervention. Convergence is also guaranteed when the system is affected by transient faults. This makes self-stabilization an effective approach for non-masking fault-tolerance. The self-stabilization was studied in various fields in distributed systems such as the problems of clock synchronization, communication and routing protocols. Given the importance of graph parameters, especially for organization and communication of networks and distributed systems, several self-stabilizing algorithms for classic graph parameters have been developed in this direction, such as self-stabilizing algorithms for finding minimal dominating sets, coloring, maximal matching, spanning tree and so on. Thence, we propose in this thesis, distributed and self-stabilizing algorithms to some wellknown graphs problems, particularly for graph decompositions and dominating sets problems that have not yet been addressed in a view of self-stabilization. The four major problems considered in this thesis are: the partitioning into triangles, p-star decomposition, edge monitoring set and independent strong dominating set problems. The common point between these four problems is that they are considered as variants of dominating set and matching problems and all propositions deal with the self-stabilization paradigm
2

Decomposition and Domination of Some Graphs / Décomposition et domination pour dans les graphes

Beggas, Fairouz 28 March 2017 (has links)
La théorie des graphes est considérée comme un vaste champ qui permet d'explorer différentes techniques de preuve des mathématiques discrètes. Ainsi, les différents problèmes traités dans cette théorie ont plein d'applications dans d'autres domaines scientifiques tels que l'informatique, la physique, la sociologie, la théorie des jeux, etc. Dans cette optique, nous proposons, dans cette thèse, de mettre l'accent sur trois problèmes de graphes, à savoir la multidécomposition de multigraphes, la [1, 2]-domination et le monitoring des arêtes. Ainsi, le fait d'explorer, dans ce travail de thèse, trois problèmes de graphes relativement distincts dans des classes de graphes différentes, nous a permis de développer plusieurs techniques de preuve ainsi qu'une multitude de façon d'aborder un problème. La première partie de cette thèse touche un aspect très important de la théorie des graphes, appelé la décomposition des graphes. Intuitivement, une décomposition en sous-graphe permet de représenter le graphe d'origine par un ensemble de copies du sous-graphe, où chaque arête du graphe initial appartient à une et une seule copie du sous-graphe. Dans cette partie, on s'intéresse plus particulièrement à la décomposition multiple d'un multigraphe complet en étoiles et cycles de même taille, c.à.d. générer à partir d'un multigraphe, plusieurs composantes disjointes (étoiles et cycles). Dans ce sens, des preuves formelles sont présentées pour déterminer les conditions nécessaires et suffisantes que doit avoir le multigraphe complet pour qu'une telle décomposition existe. Les deux autres parties de cette thèse, les parties les plus consistantes, abordent un problème suscitant beaucoup d'attention actuellement, qui est l'étude de la domination dans les graphes. Le problème original de domination consiste à trouver un ensemble de sommets (de taille minimum) dominant le reste des sommets d'un graphe. De nombreuses variantes d'intérêts à la fois théoriques et pratiques ont été proposées et étudiées dans la littérature. Dans cette partie de thèse et celle qui suit, nous nous sommes intéressés à deux variantes de domination. La première variante, appelée [i, j]-domination dans les graphes, a été introduite par Chellali et al. en 2013. En plus de ses propriétés de domination, la particularité de cette variante est que chaque sommet non dominant doit être adjacent à au moins i et au plus j sommets dominants. Plus particulièrement, nous nous somme intéresses à la [1, 2]-domination. Il convient de souligner qu'il a été démontré que le problème reste NP-complet. Dans ce sens, nous avons étudié ce paramètre dans des graphes particuliers, tels que les graphes de Petersen généralisés, ce qui rend ce problème tout aussi intéressant. Introduite par Watkins, cette famille de graphes possède un nombre de propriétés très intéressantes. D'ailleurs, plusieurs paramètres de graphes ont été étudiés sur cette classe de graphes de par sa structure qui est assez particulière. De plus, une étude de la [1, 2]-total domination sur cette classe de graphes est aussi menée dans cette thèse. La deuxième et dernière variante étudiée, aussi une variante de la domination, appelée monitoring des arêtes, a été introduite par Dong et al. en 2008. Elle consiste à trouver un ensemble de sommets qui surveille (domine) l'ensemble des arêtes dans un graphe sachant qu'un sommet surveille une arête s'il forme un triangle avec les deux extrémités de l'arête. Une arête peut être monitorée par un ou plusieurs sommets. Dans ce contexte, plusieurs variantes du monitoring des arêtes sont considérées dans cette partie à savoir monitoring des arêtes, monitoring uniforme des arêtes et monitoring pondéré des arêtes. L'essence de ce problème réside dans sa nature combinatoire ainsi que son domaine d'application, plus particulièrement dans les réseaux de capteurs sans fil. De plus, il a été prouvé que trouver un ensemble minimum pour ce problème est NP-difficile [etc....] / Graph theory is considered as a field exploring a large variety of proof techniques in discrete mathematics. Thus, the various problems treated in this theory have applications in a lot of other scientific fields such as computer science, physics, sociology, game theory, etc. In this thesis, three major problems are considered: the multidecomposition of multigraphs, the [1, 2]- domination and the edge monitoring. The fact that these three problems are of different nature allowed us to explore several proof techniques in this thesis. The first part of this thesis deals with a popular aspect of research in graph theory called graph decomposition. Intuitively, a decomposition into subgraphs allows us to describe the original graph with a set of copies of these subgraphs. In this part, we give a particular interest to the multidecomposition of a complete multigraph into edge disjoint stars and cycles. Thus, we investigate the problem of (Sk, Ck)-multidecomposition of the complete multigraph and give necessary and sufficient conditions for such a multidecomposition to exist. The second and third parts are the most important parts in terms of effort and spent time. They are devoted to problems related to domination in graphs. The original domination problem is to find a minimum set of vertices such that every vertex outside the dominating set is adjacent to at least one vertex from the dominating set. Many variants of theoretical and practical interest have been studied in the literature. The second studied problem is called the [i, j]-domination in graphs. This problem was introduced by Chellali et al. in 2013. In addition to the properties of domination, this variant has the particularity that each non-dominating vertex should be adjacent to at least i dominating vertices but also to at most j of them. We particularly focus on the [1, 2]-domination. It has been shown that the problem remains NP-complete. We are interested to study this problem on a particular graph namely the generalized Petersen graph. This graph was introduced by Watkins and has a lot of interesting properties. Moreover, several graph theoretical parameters have been studied on this graph class because of it unique structure. In addition, a study of the [1, 2]-total domination is also proposed at the end of this part. The last problem is a new variant called edge monitoring problem and was introduced by Dong et al. in 2008. It consists to find a set of vertices that monitors (dominates) the edge set of a graph such as a vertex monitors an edge if it forms a triangle with it i.e. it dominates both extremities of the edge. An edge can be monitored by one or more vertices. Three variants of the problem are considered in this part namely the edge monitoring, uniform edge monitoring and weighted edge monitoring. The essence of this problem lies on its combinatorial aspect and its range of applications in networks; especially wireless sensor networks. This problem is known to be NP-hard. Given the complexity of this kind of problems, we are first interested by a theoretical study: variants of the problem, bounds, characterizations, etc. We give more in depth studies of the problem for several graph classes

Page generated in 0.1647 seconds