• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Combinatorial and graph theoretical aspects of two-edge connected reliability

Reinwardt, Manja 30 October 2015 (has links) (PDF)
Die Untersuchung von Zuverlässigkeitsnetzwerken geht bis zum frühen 20. Jahrhundert zurück. Diese Arbeit beschäftigt sich hauptsächlich mit der Zweifach-Kantenzusammenhangswahrscheinlichkeit. Zuerst werden einfache Algorithmen, die aber für allgemeine Graphen nicht effizient sind, gezeigt, zusammen mit Reduktionen. Weiterhin werden Charakterisierungen von Kanten bezogen auf Wegemengen gezeigt. Neue strukturelle Bedingungen für diese werden vorgestellt. Neue Ergebnisse liegen ebenfalls für Graphen hoher Dichte und Symmetrie vor, genauer für vollständige und vollständig bipartite Graphen. Naturgemäß sind Graphen von geringer Dichte hier einfacher in der Untersuchung. Die Arbeit zeigt Ergebnisse für Kreise, Räder und Leiterstrukturen. Graphen mit beschränkter Weg- beziehungsweise Baumweite haben polynomiale Algorithmen und in Spezialfällen einfache Formeln, die ebenfalls vorgestellt werden. Der abschließende Teil beschäftigt sich mit Schranken und Approximationen.
2

Supereulerian graphs, Hamiltonicity of graphes and several extremal problems in graphs

Yang, Weihua 27 September 2013 (has links) (PDF)
In this thesis, we focus on the following topics: supereulerian graphs, hamiltonian line graphs, fault-tolerant Hamiltonian laceability of Cayley graphs generated by transposition trees, and several extremal problems on the (minimum and/or maximum) size of graphs under a given graph property. The thesis includes six chapters. The first one is to introduce definitions and summary the main results of the thesis, and in the last chapter we introduce the furture research of the thesis. The main studies in Chapters 2 - 5 are as follows. In Chapter 2, we explore conditions for a graph to be supereulerian.In Section 1 of Chapter 2, we characterize the graphs with minimum degree at least 2 and matching number at most 3. By using the characterization, we strengthen the result in [93] and we also address a conjecture in the paper.In Section 2 of Chapter 2, we prove that if $d(x)+d(y)\geq n-1-p(n)$ for any edge $xy\in E(G)$, then $G$ is collapsible except for several special graphs, where $p(n)=0$ for $n$ even and $p(n)=1$ for $n$ odd. As a corollary, a characterization for graphs satisfying $d(x)+d(y)\geq n-1-p(n)$ for any edge $xy\in E(G)$ to be supereulerian is obtained. This result extends the result in [21].In Section 3 of Chapter 2, we focus on a conjecture posed by Chen and Lai [Conjecture~8.6 of [33]] that every 3-edge connected and essentially 6-edge connected graph is collapsible. We find a kind of sufficient conditions for a 3-edge connected graph to be collapsible.In Chapter 3, we mainly consider the hamiltonicity of 3-connected line graphs.In the first section of Chapter 3, we give several conditions for a line graph to be hamiltonian, especially we show that every 3-connected, essentially 11-connected line graph is hamilton- connected which strengthens the result in [91].In the second section of Chapter 3, we show that every 3-connected, essentially 10-connected line graph is hamiltonian-connected.In the third section of Chapter 3, we show that 3-connected, essentially 4-connected line graph of a graph with at most 9 vertices of degree 3 is hamiltonian. Moreover, if $G$ has 10 vertices of degree 3 and its line graph is not hamiltonian, then $G$ can be contractible to the Petersen graph.In Chapter 4, we consider edge fault-tolerant hamiltonicity of Cayley graphs generated by transposition trees. We first show that for any $F\subseteq E(Cay(B:S_{n}))$, if $|F|\leq n-3$ and $n\geq4$, then there exists a hamiltonian path in $Cay(B:S_{n})-F$ between every pair of vertices which are in different partite sets. Furthermore, we strengthen the above result in the second section by showing that $Cay(S_n,B)-F$ is bipancyclic if $Cay(S_n,B)$ is not a star graph, $n\geq4$ and $|F|\leq n-3$.In Chapter 5, we consider several extremal problems on the size of graphs.In Section 1 of Chapter 5, we bounds the size of the subgraph induced by $m$ vertices of hypercubes. We show that a subgraph induced by $m$ (denote $m$ by $\sum\limits_{i=0}^ {s}2^{t_i}$, $t_0=[\log_2m]$ and $t_i= [\log_2({m-\sum\limits_{r=0}^{i-1}2 ^{t_r}})]$ for $i\geq1$) vertices of an $n$-cube (hypercube) has at most $\sum\limits_{i=0}^{s}t_i2^{t_i-1} +\sum\limits_{i=0}^{s} i\cdot2^{t_i}$ edges. As its applications, we determine the $m$-extra edge-connectivity of hypercubes for $m\leq2^{[\frac{n}2]}$ and $g$-extra edge-connectivity of the folded hypercube for $g\leq n$.In Section 2 of Chapter 5, we partially study the minimum size of graphs with a given minimum degree and a given edge degree. As an application, we characterize some kinds of minimumrestricted edge connected graphs.In Section 3 of Chapter 5, we consider the minimum size of graphs satisfying Ore-condition.
3

關於邊連通數和邊度數的問題 / Some topics on edge connectivity and edge degrees

陳玫芳 Unknown Date (has links)
在這篇論文中,我們根據局部連通和局部補連通性質將圖分類,計算在 Harary 圖裡大小為 2k - 1 和 2k 邊切集的個數,和證明當圖形有最大的最小邊度數和最小點度數差,一些關於度數為 1 的點個數性質。 / In this thesis, we classify some graphs into locally coconnected graphs or locally connected graphs, compute the number of its edge cuts of size 2k - 1 and 2k in a Harary graph, and show some properties of the number of vertices of degree 1 when the graph has the maximum difference of minimum edge degree and minimum vertex degree.
4

Combinatorial and graph theoretical aspects of two-edge connected reliability

Reinwardt, Manja 30 October 2015 (has links)
Die Untersuchung von Zuverlässigkeitsnetzwerken geht bis zum frühen 20. Jahrhundert zurück. Diese Arbeit beschäftigt sich hauptsächlich mit der Zweifach-Kantenzusammenhangswahrscheinlichkeit. Zuerst werden einfache Algorithmen, die aber für allgemeine Graphen nicht effizient sind, gezeigt, zusammen mit Reduktionen. Weiterhin werden Charakterisierungen von Kanten bezogen auf Wegemengen gezeigt. Neue strukturelle Bedingungen für diese werden vorgestellt. Neue Ergebnisse liegen ebenfalls für Graphen hoher Dichte und Symmetrie vor, genauer für vollständige und vollständig bipartite Graphen. Naturgemäß sind Graphen von geringer Dichte hier einfacher in der Untersuchung. Die Arbeit zeigt Ergebnisse für Kreise, Räder und Leiterstrukturen. Graphen mit beschränkter Weg- beziehungsweise Baumweite haben polynomiale Algorithmen und in Spezialfällen einfache Formeln, die ebenfalls vorgestellt werden. Der abschließende Teil beschäftigt sich mit Schranken und Approximationen.
5

Design of Survivable Networks with Bounded-Length Paths / Conception de Réseaux Fiables à Chemins de Longueur Bornée

Huygens, David D. P. O. 30 September 2005 (has links)
In this thesis, we consider the k-edge connected L-hop-constrained network design problem. Given a weighted graph G=(N,E), a set D of pairs of terminal nodes, and two integers k,L > 1, it consists in finding in G the minimum cost subgraph containing at least k edge-disjoint paths of at most L edges between each pair in D. This problem is of great interest in today's telecommunication industry, where highly survivable networks need to be constructed. We first study the particular case where the set of demands D is reduced to a single pair {s,t}. We propose an integer programming formulation for the problem, which consists in the st-cut and trivial inequalities, along with the so-called L-st-path-cut inequalities. We show that these three classes of inequalities completely describe the associated polytope when k=2 and L=2 or 3, and give necessary and sufficient conditions for them to be facet-defining. We also consider the dominant of the associated polytope, and discuss how the previous inequalities can be separated in polynomial time. We then extend the complete and minimal description obtained above to any number k of required edge-disjoint L-st-paths, but when L=2 only. We devise a cutting plane algorithm to solve the problem, using the previous polynomial separations, and present some computational results. After that, we consider the case where there is more than one demand in D. We first show that the problem is strongly NP-hard, for all L fixed, even when all the demands in D have one root node in common. For k=2 and L=2,3, we give an integer programming formulation, based on the previous constraints written for all pairs {s,t} in D. We then proceed by giving several new classes of facet-defining inequalities, valid for the problem in general, but more adapted to the rooted case. We propose separation procedures for these inequalities, which are embedded within a Branch-and-Cut algorithm to solve the problem when L=2,3. Extensive computational results from it are given and analyzed for both random and real instances. Since those results appear less satisfactory in the case of arbitrary demands (non necessarily rooted), we present additional families of valid inequalites in that situation. Again, separation procedures are devised for them, and added to our previous Branch-and-Cut algorithm, in order to see the practical improvement granted by them. Finally, we study the problem for greater values of L. In particular, when L=4, we propose new families of constraints for the problem of finding a subgraph that contains at least two L-st-paths either node-disjoint, or edge-disjoint. Using these, we obtain an integer programming formulation in the space of the design variables for each case. ------------------------------------------------ Dans cette thèse, nous considérons le problème de conception de réseau k-arete connexe à chemins L-bornés. Etant donné un graphe pondéré G=(N,E), un ensemble D de paires de noeuds terminaux, et deux entiers k,L > 1, ce problème consiste à trouver, dans G, un sous-graphe de cout minimum tel que, entre chaque paire dans D, il existe au moins k chemins arete-disjoints de longueur au plus L. Ce problème est d'un grand intéret dans l'industrie des télécommunications, où des réseaux hautement fiables doivent etre construits. Nous étudions tout d'abord le cas particulier où l'ensemble des demandes D est réduit à une seule paire de noeuds. Nous proposons une formulation du problème sous forme de programme linéaire en nombres entiers, laquelle consiste en les inégalités triviales et de coupe, ainsi que les inégalités dites de L-chemin-coupe. Nous montrons que ces trois types d'inégalités décrivent complètement le polytope associé lorsque k=2 et L=2,3, et donnons des conditions nécessaires et suffisantes pour que celles-ci en définissent des facettes. Nous considérons également le dominant du polytope associé et discutons de la séparation polynomiale des trois classes précédentes. Nous étendons alors cette description complète et minimale à tout nombre k de chemins arete-disjoints de longueur au plus 2. De plus, nous proposons un algorithme de plans coupants utilisant les précédentes séparations polynomiales, et en présentons quelques résultats calculatoires, pour tout k>1 et L=2,3. Nous considérons ensuite le cas où plusieurs demandes se trouvent dans D. Nous montrons d'abord que le problème est fortement NP-dur, pour tout L fixé et ce, meme si les demandes sont toutes enracinées en un noeud. Pour k=2 et L=2,3, nous donnons une formulation du problème sous forme de programme linéaire en nombres entiers. Nous proposons également de nouvelles classes d'inégalités valides, pour lesquelles nous réalisons une étude faciale. Celles-ci sont alors séparées dans le cadre d'un algorithme de coupes et branchements pour résoudre des instances aléatoires et réelles du problème. Enfin, nous étudions le problème pour de plus grandes valeurs de L. En particulier, lorsque L=4, nous donnons de nouvelles familles de contraintes pour le problème consistant à déterminer un sous-graphe contenant entre deux noeuds fixés au moins deux chemins de longueur au plus 4, que ceux-ci doivent etre arete-disjoints ou noeud-disjoints. Grace à ces dernières, nous parvenons à donner une formulation naturelle du problème dans chacun de ces deux cas.
6

Supereulerian graphs, Hamiltonicity of graphes and several extremal problems in graphs / Graphes super-eulériens, problèmes hamiltonicité et extrémaux dans les graphes

Yang, Weihua 27 September 2013 (has links)
Dans cette thèse, nous concentrons sur les sujets suivants: super-eulérien graphe, hamiltonien ligne graphes, le tolerant aux pannes hamiltonien laceabilité de Cayley graphe généré par des transposition arbres et plusieurs problèmes extrémaux concernant la (minimum et/ou maximum) taille des graphes qui ont la même propriété.Cette thèse comprend six chapitres. Le premier chapitre introduit des définitions et indique la conclusion des resultants principaux de cette thèse, et dans le dernier chapitre, nous introduisons la recherche de furture de la thèse. Les travaux principaux sont montrés dans les chapitres 2-5 comme suit:Dans le chapitre 2, nous explorons les conditions pour qu'un graphe soit super-eulérien.Dans la section 1, nous caractérisons des graphes dont le dégrée minimum est au moins de 2 et le nombre de matching est au plus de 3. Dans la section 2, nous prouvons que si pour tous les arcs xy∈E(G), d(x)+d(y)≥n-1-p(n), alors G est collapsible sauf quelques bien définis graphes qui ont la propriété p(n)=0 quand n est impair et p(n)=1 quand n est pair.Dans la section 3 de la Chapitre 2, nous trouvons les conditions suffisantes pour que un graphe de 3-arcs connectés soit pliable.Dans le chapitre 3, nous considérons surtout l'hamiltonien de 3-connecté ligne graphe.Dans la première section de Chapitre 3, nous montrons que chaque 3-connecté, essentiellement11-connecté ligne graphe est hamiltonien-connecté. Cela renforce le résultat dans [91]. Dans la seconde section de Chapitre 3, nous montrons que chaque 3-connecté, essentiellement 10-connecté ligne graphe est hamiltonien-connecté.Dans la troisième section de Chapitre 3, nous montrons que 3-connecté, essentiellement 4-connecté ligne graphe venant d'un graphe qui comprend au plus 9 sommets de degré 3 est hamiltonien. Dans le chapitre 4, nous montrons d'abord que pour tous $F\subseteq E(Cay(B:S_{n}))$, si $|F|\leq n-3$ et $n\geq 4$, il existe un hamiltonien graphe dans $Cay(B:S_{n})-F$ entre tous les paires de sommets qui sont dans les différents partite ensembles. De plus, nous renforçons le résultat figurant ci-dessus dans la seconde section montrant que $Cay(S_n,B)-F$ est bipancyclique si $Cay(S_n,B)$ n'est pas un star graphe, $n\geq 4$ et $|F|\leq n-3$.Dans le chapitre 5, nous considérons plusieurs problems extrémaux concernant la taille des graphes.Dans la section 1 de Chapitre 5, nous bornons la taille de sous-graphe provoqué par $m$ sommets de hypercubes ($n$-cubes). Dans la section 2 de Chapitre 5, nous étudions partiellement la taille minimale d'un graphe savant son degré minimum et son degré d'arc. Dans la section 3 de Chapitre 5, nous considérons la taille minimale des graphes satisfaisants la Ore-condition. / In this thesis, we focus on the following topics: supereulerian graphs, hamiltonian line graphs, fault-tolerant Hamiltonian laceability of Cayley graphs generated by transposition trees, and several extremal problems on the (minimum and/or maximum) size of graphs under a given graph property. The thesis includes six chapters. The first one is to introduce definitions and summary the main results of the thesis, and in the last chapter we introduce the furture research of the thesis. The main studies in Chapters 2 - 5 are as follows. In Chapter 2, we explore conditions for a graph to be supereulerian.In Section 1 of Chapter 2, we characterize the graphs with minimum degree at least 2 and matching number at most 3. By using the characterization, we strengthen the result in [93] and we also address a conjecture in the paper.In Section 2 of Chapter 2, we prove that if $d(x)+d(y)\geq n-1-p(n)$ for any edge $xy\in E(G)$, then $G$ is collapsible except for several special graphs, where $p(n)=0$ for $n$ even and $p(n)=1$ for $n$ odd. As a corollary, a characterization for graphs satisfying $d(x)+d(y)\geq n-1-p(n)$ for any edge $xy\in E(G)$ to be supereulerian is obtained. This result extends the result in [21].In Section 3 of Chapter 2, we focus on a conjecture posed by Chen and Lai [Conjecture~8.6 of [33]] that every 3-edge connected and essentially 6-edge connected graph is collapsible. We find a kind of sufficient conditions for a 3-edge connected graph to be collapsible.In Chapter 3, we mainly consider the hamiltonicity of 3-connected line graphs.In the first section of Chapter 3, we give several conditions for a line graph to be hamiltonian, especially we show that every 3-connected, essentially 11-connected line graph is hamilton- connected which strengthens the result in [91].In the second section of Chapter 3, we show that every 3-connected, essentially 10-connected line graph is hamiltonian-connected.In the third section of Chapter 3, we show that 3-connected, essentially 4-connected line graph of a graph with at most 9 vertices of degree 3 is hamiltonian. Moreover, if $G$ has 10 vertices of degree 3 and its line graph is not hamiltonian, then $G$ can be contractible to the Petersen graph.In Chapter 4, we consider edge fault-tolerant hamiltonicity of Cayley graphs generated by transposition trees. We first show that for any $F\subseteq E(Cay(B:S_{n}))$, if $|F|\leq n-3$ and $n\geq4$, then there exists a hamiltonian path in $Cay(B:S_{n})-F$ between every pair of vertices which are in different partite sets. Furthermore, we strengthen the above result in the second section by showing that $Cay(S_n,B)-F$ is bipancyclic if $Cay(S_n,B)$ is not a star graph, $n\geq4$ and $|F|\leq n-3$.In Chapter 5, we consider several extremal problems on the size of graphs.In Section 1 of Chapter 5, we bounds the size of the subgraph induced by $m$ vertices of hypercubes. We show that a subgraph induced by $m$ (denote $m$ by $\sum\limits_{i=0}^ {s}2^{t_i}$, $t_0=[\log_2m]$ and $t_i= [\log_2({m-\sum\limits_{r=0}^{i-1}2 ^{t_r}})]$ for $i\geq1$) vertices of an $n$-cube (hypercube) has at most $\sum\limits_{i=0}^{s}t_i2^{t_i-1} +\sum\limits_{i=0}^{s} i\cdot2^{t_i}$ edges. As its applications, we determine the $m$-extra edge-connectivity of hypercubes for $m\leq2^{[\frac{n}2]}$ and $g$-extra edge-connectivity of the folded hypercube for $g\leq n$.In Section 2 of Chapter 5, we partially study the minimum size of graphs with a given minimum degree and a given edge degree. As an application, we characterize some kinds of minimumrestricted edge connected graphs.In Section 3 of Chapter 5, we consider the minimum size of graphs satisfying Ore-condition.
7

Design of survivable networks with bounded-length paths / Conception de réseaux fiables à chemins de longueur bornée

Huygens, David 30 September 2005 (has links)
In this thesis, we consider the k-edge connected L-hop-constrained network design problem. Given a weighted graph G=(N,E), a set D of pairs of terminal nodes, and two integers k,L > 1, it consists in finding in G the minimum cost subgraph containing at least k edge-disjoint paths of at most L edges between each pair in D. This problem is of great interest in today's telecommunication industry, where highly survivable networks need to be constructed.<p><p>We first study the particular case where the set of demands D is reduced to a single pair {s,t}. We propose an integer programming formulation for the problem, which consists in the st-cut and trivial inequalities, along with the so-called L-st-path-cut inequalities. We show that these three classes of inequalities completely describe the associated polytope when k=2 and L=2 or 3, and give necessary and sufficient conditions for them to be facet-defining. We also consider the dominant of the associated polytope, and discuss how the previous inequalities can be separated in polynomial time.<p><p>We then extend the complete and minimal description obtained above to any number k of required edge-disjoint L-st-paths, but when L=2 only. We devise a cutting plane algorithm to solve the problem, using the previous polynomial separations, and present some computational results.<p><p>After that, we consider the case where there is more than one demand in D. We first show that the problem is strongly NP-hard, for all L fixed, even when all the demands in D have one root node in common. For k=2 and L=2,3, we give an integer programming formulation, based on the previous constraints written for all pairs {s,t} in D. We then proceed by giving several new classes of facet-defining inequalities, valid for the problem in general, but more adapted to the rooted case. We propose separation procedures for these inequalities, which are embedded within a Branch-and-Cut algorithm to solve the problem when L=2,3. Extensive computational results from it are given and analyzed for both random and real instances.<p><p>Since those results appear less satisfactory in the case of arbitrary demands (non necessarily rooted), we present additional families of valid inequalites in that situation. Again, separation procedures are devised for them, and added to our previous Branch-and-Cut algorithm, in order to see the practical improvement granted by them.<p><p>Finally, we study the problem for greater values of L. In particular, when L=4, we propose new families of constraints for the problem of finding a subgraph that contains at least two L-st-paths either node-disjoint, or edge-disjoint. Using these, we obtain an integer programming formulation in the space of the design variables for each case.<p><p>------------------------------------------------<p><p>Dans cette thèse, nous considérons le problème de conception de réseau k-arete connexe à chemins L-bornés. Etant donné un graphe pondéré G=(N,E), un ensemble D de paires de noeuds terminaux, et deux entiers k,L > 1, ce problème consiste à trouver, dans G, un sous-graphe de cout minimum tel que, entre chaque paire dans D, il existe au moins k chemins arete-disjoints de longueur au plus L. Ce problème est d'un grand intéret dans l'industrie des télécommunications, où des réseaux hautement fiables doivent etre construits.<p><p>Nous étudions tout d'abord le cas particulier où l'ensemble des demandes D est réduit à une seule paire de noeuds. Nous proposons une formulation du problème sous forme de programme linéaire en nombres entiers, laquelle consiste en les inégalités triviales et de coupe, ainsi que les inégalités dites de L-chemin-coupe. Nous montrons que ces trois types d'inégalités décrivent complètement le polytope associé lorsque k=2 et L=2,3, et donnons des conditions nécessaires et suffisantes pour que celles-ci en définissent des facettes. Nous considérons également le dominant du polytope associé et discutons de la séparation polynomiale des trois classes précédentes.<p><p>Nous étendons alors cette description complète et minimale à tout nombre k de chemins arete-disjoints de longueur au plus 2. De plus, nous proposons un algorithme de plans coupants utilisant les précédentes séparations polynomiales, et en présentons quelques résultats calculatoires, pour tout k>1 et L=2,3.<p><p>Nous considérons ensuite le cas où plusieurs demandes se trouvent dans D. Nous montrons d'abord que le problème est fortement NP-dur, pour tout L fixé et ce, meme si les demandes sont toutes enracinées en un noeud. Pour k=2 et L=2,3, nous donnons une formulation du problème sous forme de programme linéaire en nombres entiers. Nous proposons également de nouvelles classes d'inégalités valides, pour lesquelles nous réalisons une étude faciale. Celles-ci sont alors séparées dans le cadre d'un algorithme de coupes et branchements pour résoudre des instances aléatoires et réelles du problème.<p><p>Enfin, nous étudions le problème pour de plus grandes valeurs de L. En particulier, lorsque L=4, nous donnons de nouvelles familles de contraintes pour le problème consistant à déterminer un sous-graphe contenant entre deux noeuds fixés au moins deux chemins de longueur au plus 4, que ceux-ci doivent etre arete-disjoints ou noeud-disjoints. Grace à ces dernières, nous parvenons à donner une formulation naturelle du problème dans chacun de ces deux cas. <p> / Doctorat en sciences, Spécialisation Informatique / info:eu-repo/semantics/nonPublished

Page generated in 0.0418 seconds