• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ponto quântico com interação de Rashba no limite de largura de banda zero

Silva, Elcivan dos Santos 08 March 2013 (has links)
Submitted by Geyciane Santos (geyciane_thamires@hotmail.com) on 2015-08-06T14:46:34Z No. of bitstreams: 1 Dissertação - Elcivan dos Santos Silva.pdf: 6224760 bytes, checksum: 94c537842fa4d66158cc9db90e8afec2 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-08-07T13:37:35Z (GMT) No. of bitstreams: 1 Dissertação - Elcivan dos Santos Silva.pdf: 6224760 bytes, checksum: 94c537842fa4d66158cc9db90e8afec2 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-08-07T13:41:14Z (GMT) No. of bitstreams: 1 Dissertação - Elcivan dos Santos Silva.pdf: 6224760 bytes, checksum: 94c537842fa4d66158cc9db90e8afec2 (MD5) / Made available in DSpace on 2015-08-07T13:41:15Z (GMT). No. of bitstreams: 1 Dissertação - Elcivan dos Santos Silva.pdf: 6224760 bytes, checksum: 94c537842fa4d66158cc9db90e8afec2 (MD5) Previous issue date: 2013-03-08 / CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico / Quantum dots have been studied using two electrodes, represented by two conduction bands, coupled to an Anderson impurity. This impurity can be empty, occupied by an electron with energy f or two electrons with energy 2 f + U, where U is the Coulomb interaction between the electrons. The calculation of thermodynamic and transport properties in this model is rather complex, since the interaction U between the orbital electrons of the impurity induce many body interaction via the hybridization of the orbital levels with the conduction bands. Interactions of this type require sophisticated methods of many body calculation, usually numeric, with great computational demand In this Dissertation we use the above model in a simplified form, in the zero limit of the conduction bands width, and introduced the Rashba spin-orbit interaction to the conduction electrons. Thus, the conduction bands are replaced by their respective Fermi levels that are coupled to a third level, which represents the quantum dot. The advantage of the above model is that we can treat it exactly, without making any approach concerning their parameters. As the model is represented by three energy levels and each level can be unoccupied, occupied by an electron with spin up or spin down, or two electrons, one with spin up and the other with spin down, the Hamiltonian can be represented by a 64x64 matrix, which makes it difficult to perform an exact diagonalization. To work around this issue, we find that the studied Hamiltonian conserves charge and parity. This allows us to rewrite the Hamiltonian in the form of matrices whose basis belong to subspaces of the same charge and parity. With this procedure, the 64x64 matrix is replaced by a 1x1 matrix in the zero charge subspace, two 3x3 matrices in the one charge subspace, two 3x3 matrices and one 9x9 matrix in the two charge subspace, two 1x1 matrices and two 9x9 matrices in the three charge subspace, two 3x3 matrices and one 9x9 matrix in the four charge subspace, two 3x3 matrices in the five charge subspace, and one 1x1 matrix in the six charge subspace. Knowing the eigenstates (eigenvalues and eigenvectors) of the Hamiltonian of the studied model, we determined their corresponding thermodynamic and transport properties. Thus, we present the behavior of the energy spectrum, the occupation number, the magnetic susceptibility, the specific heat and the electrical conductance as a function of the parameters of the model. / Os pontos quânticos têm sido estudados utilizando-se dois eletrodos, representados por duas bandas de condução, acoplados a uma impureza de Anderson. Essa impureza pode estar com seus níveis de energia vazio, ocupado com um elétron com energia f ou com dois elétrons, com energia 2 f +U, onde U é a interação Coulombiana entre os seus elétrons. O cálculo das propriedades termodinâmicas e de transportes nesse modelo é bastante complexo, uma vez que a interação U entre os elétrons do orbital da impureza induz interações de muitos corpos, via a hibridização desse orbital com os níveis das bandas de condução. Interações desse tipo exigem métodos sofisticados de cálculo de muitos corpos, em geral numéricos, com grande demanda computacional. Nesta dissertação utilizamos o modelo acima de uma forma simplificada, no limite da largura das bandas de condução zero, e introduzimos a interação spin-órbita de Rashba aos elétrons de condução. Dessa forma, as bandas de condução são substituídas pelos seus respectivos níveis de Fermi que se acoplam a um terceiro nível, que constitui o ponto quântico. A vantagem do modelo acima é que podemos tratá-lo exatamente, sem fazer nenhuma aproximação a respeito dos seus parâmetros. Como o modelo é representado por três níveis de energia e cada nível pode estar desocupado, ocupado com um elétron com spin para cima ou para baixo, ou com dois elétrons, um com spin para cima e outro com spin para baixo, o Hamiltoniano pode ser representado por uma matriz de dimensão 64x64, o que torna difícil sua diagonalização exata. Para contornar essa questão, verificamos que o Hamiltoniano estudado possui as propriedades de conservação de carga e de paridade. Isso nos permite reescrevê-lo na forma de matrizes cujas bases pertencem a subespaços de mesma carga e paridade. Com esse procedimento, a matriz de dimensão 64x64 é substituída por uma matriz 1x1 no subespaço de carga zero, duas matrizes 3x3no subespaço de carga 1, duas matrizes 3x3 e uma matriz 9x9 no subespaço de carga 2, duas matrizes 1x1 de carga 3, 2 matrizes 9x9 de carga 3, duas matrizes 3x3 e uma matriz 9x9 no subespaço de carga 4, duas matrizes 3x3 no subespaço de carga 5 e, finalmente, uma matriz 1x1 no subespaço de carga 6. Obtidos os autoestados (autovalores e autovetores) do Hamiltoniano do modelo estudado, passamos a determinar as suas correspondentes propriedades termodinâmicas e de transporte. Assim, apresentamos o comportamento do espectro de energia, o número de ocupação, a susceptibilidade magnética, o calor específico e a condutância elétrica em função dos parâmetros do modelo.
2

Teoria BCS com efeito Rashba

Dias, Cleverton Oliveira 25 November 2015 (has links)
Submitted by Bianca Neves (oliveirabia1@ymail.com) on 2016-04-19T19:40:49Z No. of bitstreams: 1 Dissertação- Cleverton Oliveira Dias.pdf: 1220759 bytes, checksum: a90af3e1cf4a80152ef01c95168c9138 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2016-04-27T20:50:09Z (GMT) No. of bitstreams: 1 Dissertação- Cleverton Oliveira Dias.pdf: 1220759 bytes, checksum: a90af3e1cf4a80152ef01c95168c9138 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2016-04-28T14:45:10Z (GMT) No. of bitstreams: 1 Dissertação- Cleverton Oliveira Dias.pdf: 1220759 bytes, checksum: a90af3e1cf4a80152ef01c95168c9138 (MD5) / Made available in DSpace on 2016-04-28T14:45:10Z (GMT). No. of bitstreams: 1 Dissertação- Cleverton Oliveira Dias.pdf: 1220759 bytes, checksum: a90af3e1cf4a80152ef01c95168c9138 (MD5) Previous issue date: 2015-11-25 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This dissertation presents systematically the traditional superconductors, taking into account its discovery, properties that characterize the theory describing and changes taking place in their thermodynamic properties when subject to spin-orbit interaction Rashba. In the rst part are the key topics discussed related to phenomenon of superconductivity. It begins with a chapter 1 approach of the historical evolution of superconductivity and presentation properties that characterize a conventional superconductor, in addition to de ne superconductors Type I (conventional) and type II. The Chapter 2 is intended for an explanation of the microscopic BCS theory whose application is associated with type I superconductors, although this chapter argue about the interaction of electrons with the network, thus forming what is called Cooper pairs. The Chapter 3 is intended to introduce the Rashba model, which can be veri ed in two ways: by spontaneous generation of electric eld the junction interface of two materials or because application of the an external electric eld. In work not take into account the so that will be produced this electric eld. In Chapter 4 it shows the model Hamiltonian that constitutes the junction BCS Hamiltonian with the Hamiltonian of Rashba, from this model it is intended to calculate the e ect of Rashba interaction on the gap energy using the method of canonical transformations, consisting to assess the evolution of the operator concerned by a equation of dynamic evolution, allowing us nd the self energy carriers and their respective eigenvalues and associates them to gaps of energy. As a result of Chapter 4, Chapter 5 determine the gap superconductor function of temperature and the parameter R Rashba and as the thermodynamic properties of the model studied in this chapter also opens a space for comments and discussions. We end with Chapter 6, presenting partial conclusions, Related analytical curve made from certain data numerical, these curves will analyze the variation in thermodynamic properties of superconductors because the e ect Rashba. / A presente dissertação consiste em apresentar de forma sistemática os supercondutores tradicionais, levando em consideração sua descoberta, as propriedades que o caracterizam, a teoria que os descrevem e as mudanças que ocorrem em suas propriedades termodinâmicas quando submetidos a interação spin- orbita de Rashba. Na primeira parte são discutidos os t ópicos fundamentais referentes ao fenômeno da supercondutividade. Inicia-se o capítulo 1 com uma abordagem da evolução hist orica da supercondutividade e a apresentação das propriedades que caracterizam um supercondutor convencional, al em de de nir supercondutores tipo I (convencionais) e tipo II. O cap tulo 2 destina-se a uma explana c~ao da teoria microscópica BCS, cuja aplicação está associada a supercondutores de tipo I, ainda neste capítulo argumenta-se sobre a interação dos elétrons com a rede, formando assim o que chamamos de pares de Cooper. O capiítulo 3 destina-se a apresentar o modelo de Rashba, que pode ser verificado de duas maneiras: por geração espontânea de campo elétrico na interface da junção de dois materiais ou em razão da aplicação de um campo elétrico externo. No trabalho não se levar a em conta a maneira que ser a produzido esse campo elétrico. No capítulo 4 apresenta-se o Hamiltoniano do modelo, que consiste na junção do Hamiltoniano BCS com o Hamiltoniano de Rashba, a partir deste modelo pretende-se calcular o efeito da intera ção de Rashba, sobre os gaps de energia utilizando o m etodo das transforma ções canônicas, que consiste em avaliar a evolu ção temporal do operador em questão por meio de uma equa ção de evolução dinâmica, o que nos permitir a encontrar os autovetores de energia e seus respectivos autovalores e associa-los aos gaps de energia. Como consequência do capítulo 4, no cap tulo 5 determinaremos o gap do supercondutor em fun ção da temperatura e do parâmetro de Rashba R, bem como as propriedades termodinâmicas do modelo estudado, neste cap tulo tamb em abre-se um espa co para comentarios e discussões. Finalizamos com o cap tulo 6, apresentando conclusões parciais, relacionadas a an alise de algumas curvas feitas a partir de dados num ericos, estas curvas permitirão analisar a varia ção nas propriedades termodinâmicas dos supercondutores devido o efeito Rashba.
3

Efeito Rashba em isolantes topológicos / Rashba effect in Topological Insulators

Pérez, Oscar Andres Babilonia 21 November 2016 (has links)
Neste trabalho de mestrado apresentamos um estudo sobre a manifestação do efeito Rashba em isolantes topológicos na ausência de simetria de inversão estrutural. Os cálculos das propriedades atomísticas, energéticas e as estruturas eletrônicas são abordados através de métodos de primeiros princípios baseados na teoria do funcional da densidade. E seus resultados foram utilizados para o desenvolvimento de hamiltoniana efetiva baseado no modelo de Zhang. Realizamos o estudo de dois sistemas: 1) Bi$_2$Se$_3$ com átomos de Sn depositados na superfície: Este sistema pode ser entendido através da manifestação do efeito Rashba sobre um isolante topológico dada a quebra de simetria de inversão estrutural. Para um sítio de deposição específico, os átomos de Sn causam uma reconstrução da superfície e um terceiro cone de Dirac é observado na estrutura eletrônica. Este terceiro cone é não localizado na superfície e pode ser entendido como a manifestação do efeito Rashba. 2) PbBiI: Reportado aqui como um novo isolante topológico 2D com efeito Rashba. Descobrimos este sistema por um estudo sistemático sobre uma família de materiais formados por átomos tipo IV, V, e VII, cuja estrutura cristalina é hexagonal e não centrossimétrica. Mostramos que o PbBiI possui: i) Estabilidade mecânica, ii) Spin-splitting Rashba de 60 meV, iii) um gap de energia não trivial de 0.14 eV, iv) retroespalhamento proibido entre os estados de borda e v) retroespalhamento proibido entre os estados do bulk no entorno do nível de Fermi. Estas propriedades fazem do PbBiI um candidato para construção de dispositivos de spintrônica que atenua a perda de energia. / In this work, were studied the Rashba effect in topological insulators without structural inversion symmetry. We performed a first principles study based on density functional theory to calculate the atomistic properties, formation energy and electronic structure. These results were used to development a effective Hamiltonian based on Zhang model. They were studied two systems: 1) Bi$_2$Se$_3$ with Sn atoms deposited on the surface: This system can be seen as the Rashba effect manifestation on a topological insulator due to the structural inversion symmetry breaking. For a specific deposition site, the Sn atoms cause a reconstruction of the surface and display a third Dirac cone in the electronic structure. This third cone is not located on the surface and can be understood as the giant Rashba effect manifestation. 2) We propose a new non-centrosymmetric honeycomb-lattice QSH insulator family formed by the IV, V, and VII elements. The system formed by Bi, Pb and I atoms is reported here as a new 2D topological insulator with Rashba effect. We show that this system has: i) Mechanical stability, ii) spin-splitting Rashba of 60 meV, iii) nontrivial energy gap of 0.14 eV, iv) backscattering forbidden for both edge and bulk conductivity channels in the nanoribbon band structure. These properties make PbBiI a good candidate to construct spintronic devices with less energy loss.
4

Efeito Rashba em isolantes topológicos / Rashba effect in Topological Insulators

Oscar Andres Babilonia Pérez 21 November 2016 (has links)
Neste trabalho de mestrado apresentamos um estudo sobre a manifestação do efeito Rashba em isolantes topológicos na ausência de simetria de inversão estrutural. Os cálculos das propriedades atomísticas, energéticas e as estruturas eletrônicas são abordados através de métodos de primeiros princípios baseados na teoria do funcional da densidade. E seus resultados foram utilizados para o desenvolvimento de hamiltoniana efetiva baseado no modelo de Zhang. Realizamos o estudo de dois sistemas: 1) Bi$_2$Se$_3$ com átomos de Sn depositados na superfície: Este sistema pode ser entendido através da manifestação do efeito Rashba sobre um isolante topológico dada a quebra de simetria de inversão estrutural. Para um sítio de deposição específico, os átomos de Sn causam uma reconstrução da superfície e um terceiro cone de Dirac é observado na estrutura eletrônica. Este terceiro cone é não localizado na superfície e pode ser entendido como a manifestação do efeito Rashba. 2) PbBiI: Reportado aqui como um novo isolante topológico 2D com efeito Rashba. Descobrimos este sistema por um estudo sistemático sobre uma família de materiais formados por átomos tipo IV, V, e VII, cuja estrutura cristalina é hexagonal e não centrossimétrica. Mostramos que o PbBiI possui: i) Estabilidade mecânica, ii) Spin-splitting Rashba de 60 meV, iii) um gap de energia não trivial de 0.14 eV, iv) retroespalhamento proibido entre os estados de borda e v) retroespalhamento proibido entre os estados do bulk no entorno do nível de Fermi. Estas propriedades fazem do PbBiI um candidato para construção de dispositivos de spintrônica que atenua a perda de energia. / In this work, were studied the Rashba effect in topological insulators without structural inversion symmetry. We performed a first principles study based on density functional theory to calculate the atomistic properties, formation energy and electronic structure. These results were used to development a effective Hamiltonian based on Zhang model. They were studied two systems: 1) Bi$_2$Se$_3$ with Sn atoms deposited on the surface: This system can be seen as the Rashba effect manifestation on a topological insulator due to the structural inversion symmetry breaking. For a specific deposition site, the Sn atoms cause a reconstruction of the surface and display a third Dirac cone in the electronic structure. This third cone is not located on the surface and can be understood as the giant Rashba effect manifestation. 2) We propose a new non-centrosymmetric honeycomb-lattice QSH insulator family formed by the IV, V, and VII elements. The system formed by Bi, Pb and I atoms is reported here as a new 2D topological insulator with Rashba effect. We show that this system has: i) Mechanical stability, ii) spin-splitting Rashba of 60 meV, iii) nontrivial energy gap of 0.14 eV, iv) backscattering forbidden for both edge and bulk conductivity channels in the nanoribbon band structure. These properties make PbBiI a good candidate to construct spintronic devices with less energy loss.

Page generated in 0.0439 seconds