• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sobre o caos de Devaney e implicações /

Brandão, Dienes de Lima January 2019 (has links)
Orientador: Weber Flávio Pereira / Resumo: A Teoria dos Sistemas Dinâmicos pode ser aplicada em diversas áreas da ciência, para, por exemplo, modelar fenômenos e problemas: Biológicos, da Física, Mecânica, Eletrônica, Economia, etc. Um sistema pode ser definido como um conjunto de elementos agrupados que mantêm alguma interação, de modo que existam relações de causa e efeito. Dizemos que é dinâmico quando algumas grandezas que compõem os elementos variam no tempo, sendo o tempo discreto quando a variável tempo é um número inteiro. Na busca de uma compreensão qualitativa e/ou topológica de um sistema, revela-se uma gama muito grande de movimentos que podem ser tanto regulares quanto caóticos. O termo “caos” só foi introduzido por James Yorke e TienYien Li em 1975, num artigo que simplificava um dos resultados da escola russa: o Teorema de Sharkovskii de 1964. Esporadicamente, antes e depois da introdução do termo, os sistemas caóticos apareciam na literatura aplicada, o mais famoso deles foi por Edward Norton Lorenz em 1963, que se propôs a modelar a convecção atmosférica. Em seus estudos ele descobriu que, para o seu modelo matemático, ínfimas modificações nas coordenadas iniciais mudavam de forma significativa os resultados finais, daí originou o termo popular do fenômeno (Efeito Borboleta). Mais tarde, em 1989, Robert Luke Devaney no seu livro: “An Introduction to Chaotic Dynamical Systems” [11], definiu um sistema como caótico se ele tem uma dependência sensível das condições iniciais, é topologicamente transitivo e suas ... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Dynamical Systems Theory can be applied in various areas of science, for example, to model phenomena and problems: biology, physics, mechanics, electronics, economics, etc. A system can be defined as a set of grouped elements that maintain someinteraction. Wesaythatitisdynamicwhensomemagnitudesthatmakeupthe elementsvaryintime,beingdiscretetimewhenthevariabletimeisaninteger. Inthe pursuit of a qualitative and/or topological understanding of a system, a wide range of movements that can be both regular or chaotic is revealed. The term “chaos” was only introduced by James Yorke and TienYien Li in 1975, in an article that simplified one of the results of the Russian school: the 1964 Sharkovskii’s Theorem. Sporadically, before and after the introduction of the term, chaotic systems appeared in applied literature, the most famous of which was by Edward Norton Lorenz in 1963, who set out to model atmospheric convection. In his studies he found that for his created system, minor modifications to the initial coordinates significantly changed the final results, hence the popular term of the phenomenon (Butterfly Effect). Later, in 1989, Robert Luke Devaney in his book, “An Introduction to Chaotic Dynamical Systems” [11], defined a system as chaotic if it has a sensitive dependence on initial conditions, is topologically transitive, and its periodic orbits form a dense set. The main objective of this work is to study and present the evolution of the definition of discrete time Chaotic Dynamic Sy... (Complete abstract click electronic access below) / Mestre

Page generated in 0.063 seconds