• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 84
  • 64
  • 12
  • 12
  • 12
  • 12
  • 12
  • 12
  • 4
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 221
  • 221
  • 25
  • 24
  • 18
  • 17
  • 17
  • 17
  • 16
  • 16
  • 15
  • 14
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Recombinagenic and anti-mutagenic processing of UV-light photoproducts by the Escherichia coli methyl-directed mismatch-repair system

Feng, Wen-yang 23 February 1994 (has links)
Graduation date: 1995
172

Beta-particle backscatter factors and energy-absorption scaling factors for use with dose-point kernels

Mangini, Colby D. 26 November 2012 (has links)
'Hot particle' skin dosimetry calculations are commonly performed using homogeneous dose-point kernels (DPK) in conjunction with scaling and backscatter models to account for non-homogeneous geometries. A new scaling model for determining the actual DPK for beta-particles transmitted by a high-Z source material has been developed. The model is based on a determination of the amount of mono-energetic electron absorption that occurs in a given source thickness through the use of EGSnrc (Electron Gamma Shower) Monte Carlo simulations. Integration over a particular beta spectrum provides the beta-particle DPK following self-absorption as a function of source thickness and radial depth in water, thereby accounting for spectral hardening that may occur in higher-Z materials. Beta spectra of varying spectral shapes and endpoint energies were used to test our model for select source materials with 7.42 < Z ��� 94. A new volumetric backscatter model has also been developed. This model corrects for beta-particle backscattering that occurs both in the source medium and in the atmosphere surrounding the source. Hot particle backscatter factors are constructed iteratively through selective integration of point-source backscatter factors over a given source geometry. Selection criteria are based on individual source-point positions within the source and determine which, if any, backscatter factors are used. The new scaling model and backscatter model were implemented into the DPK-based code VARSKIN 4 for extensive dose testing and verification. Verification results were compared to equivalent Monte Carlo simulations. The results demonstrate that significant improvements can be made to DPK-based models when dealing with high-Z volumetric sources in non-homogeneous geometries. / Graduation date: 2013
173

Isolation and characterization of DNA-damage-repair/toleration genes from Arabidopsis thaliana

Pang, Qishen 17 December 1992 (has links)
Graduation date: 1993
174

Two-dimensional temperature model for target materials bombarded by ion beams

Bostick, Kent C. 04 February 1992 (has links)
The ion implantation process is a very precise, controllable, and reproducible method used to enhance material properties of finished components such as ball bearings. Essentially, the target material is bombarded by accelerated ions to form a thin alloyed layer in the substrate. As the ions deposit their kinetic energy in the target it begins to heat up. To prevent thermal distortion in the finished pieces the ion implantation is performed at dose levels (dependent on the ion fluence and time duration of implantation) to insure that the target pieces stay at relatively low temperatures. Consequently, the low temperature requirement for many applications limits the economic, and probably, the physical success of ion implantation. The purpose of this study was to show the applicability of using a two-dimensional computer code developed to model plasma disruptions and subsequent energy deposition on a fusion reactor first wall to calculate surface and bulk temperature information during ion implantation. In turn the code may assist researchers pursuing development of adequate cooling for target materials in an attempt to overcome the low temperature constraint. All data supported the hypotheses that the two-dimensional code previously developed for fusion reactor applications was adequate to model the ion implantation process. / Graduation date: 1992
175

Development and Validation of a Nanodosimetry-Based Cell Survival Model for Mixed High- and Low-LET radiations

Zhang, Xin 13 June 2006 (has links)
A new nanodosimetry-based cell survival model for mixed high- and low-LET radiations has been developed. The new model employs three dosimetry quantities and three biological quantities. The three dosimetry quantities are related to energy depositions at two nanometer scales, 5nm and 25nm. The three biological quantities are related to lesion production and interaction probabilities, and lesion repair rate. The model assumes that the lesions created at the two nanometer scales are directly or indirectly responsible for cell death depending on the lesions interaction and repair rate. The cell survival fraction derived from the new model can be expressed by the familiar dose-dependent linear quadratic formula. The coefficients alpha and beta are based on the three nanodosimetry quantities and the three biological quantities. Validation of the new model has been performed both by using published data and by the experimental data obtained. Published cell survival curves for V-79 Chinese hamster cells irradiated with various LET of radiations were used for validation. The new model was applied to radiation therapy by irradiating V-79 cells with mixed fission neutron and gamma-rays. The results show that the new model has been successfully used in a mixed n+g field to predict the synergistic effect between neutron and gamma-ray lesions and the RBE for fission neutrons.
176

Analysis and modeling of the long-term performance of amorphous photovoltaic arrays.

Choi, Hong Kyu. January 1989 (has links)
A validated predictive model of a-Si:H solar cell arrays was developed. The performance of a-Si:H solar cells was modeled by predicting the performance before degradation first, and then modifying it with terms that account for degradation and recovery effects. A unique approach for the determination of the fundamental rate controlling parameters for the degradation and recovery process was carried out by observing the variation of the short-circuit current. The experimental annealing of a-Si:H silicon samples showed that the percent recovery from the degraded state to the as-grown state by annealing was virtually independent of the initial state at the start of the annealing process. This allowed the recovery parameters to be determined independently of the prior degradation process. An extremely simple and fast running algorithm for the long-term performance was developed in terms of the incident solar radiation, the panel temperature, and the total radiation exposed. Also it was found that the entire process of the Staebler-Wronski effect could be adequately represented by a correlation in which the degradation and recovery processes are solely a function of the total radiation exposure of the panel at ambient conditions.
177

A measurement of solar reflectivity of building materials, Tucson, Arizona

Acklam, David Mark, 1946- January 1977 (has links)
No description available.
178

Effects of antioxidant vitamin treatment on UV-irradiated cells

Howell, Anne C. January 1995 (has links)
Ultraviolet (UV) radiation damages both eukaryotic and prokaryotic cells by causing the formation of free radicals which damage cell membranes and DNA. Antioxidant vitamins have been shown to protect cells from UV-induced damage by scavenging free radicals. The protection of skin and its normal flora is necessary for the health of individuals in resisting diseases caused by microorganisms and delaying the long-term damage caused by UV radiation.This research investigated the effects of the antioxidants vitamin A and ascorbic acid, as well as UV-irradiation on both prokaryotic (Staphylococcus epidermidis) cells and eukaryotic (human fibroblast skin) cells. This information is important in determining the effects of vitamin treatment on skin and its normal flora.Results indicate that ascorbic acid is rapidly (within six hours) degraded after being dissolved in water or medium. Treatment of cells with ascorbic acid must take into account this rapid degradation. S.epidermidis cells were protected from UV-induced damage by treatment with ascorbic acid but were more sensitive to UV-irradiation when treated with vitamin A. Human fibroblast cells treated with ascorbic acid did not exhibit morphological changes when compared to untreated cells. / Department of Biology
179

Mitotic and mutagenic effects of pesticides on Hordeum and Tradescantia.

Tomkins, Darrell Joan January 1971 (has links)
No description available.
180

ESCA studies of a brass surface subjected to gas-jet enhanced sputtering

Govier, R. D. 10 December 1992 (has links)
The inert gas ion bombardment of solid surfaces has found many uses in the field of analytical chemistry. In one method of spectrochemical analysis, inert gas ion bombardment in a glow discharge is used to produce an atomic vapor, representative of the sample bulk, which is analyzed using atomic absorption techniques. Gas jets directed at the sample surface during the discharge increase the removal rate of sample material from the surface. Such bombardment of solid surfaces results in changes to the surface which are visually evident in the formation of craters and surface deposits. This thesis was designed to gain a better understanding of the changes in a brass surface caused by jet-enhanced sputtering. Electron spectroscopy for chemical analysis (ESCA) is used to study selected regions of the surface. Changes in chemical composition were observed as successive atomic layers were removed from the sample. The results of this investigation indicate that the effects of ion bombardment can be explained in terms of the selective sputtering of one bulk component over another. The surfaces of the sputtered craters were found to be depleted of the higher sputtering yield component, Zn, when compared to the bulk composition. In a deposit, the component with the highest sputtering yield was found to be more concentrated in layers closest to the bulk material. The component with the lowest sputtering yield was found at relatively higher concentrations nearest the deposit surface. The component with the higher sputtering yield is selectively sputtered first during the glow discharge, and consequently is deposited with a higher concentration closest to the bulk, the converse being true for the lowest sputtering yield component. / Graduation date: 1993

Page generated in 0.1187 seconds