Spelling suggestions: "subject:"dffect off stress ono"" "subject:"dffect off stress onn""
71 |
Salt stress, and phosphorus absorption by potato plants cv. 'Russet Burbank'Kalifa, Ali. January 1997 (has links)
No description available.
|
72 |
Invertebrate Community Composition Across Inundation Regimes and Its Potential to Reduce Plant StressLawson, Inez Ilicia 08 September 2017 (has links)
Appreciation of the ecological and economic values associated with healthy salt marshes has led to a recent rise in the number of marshes that are being targeted for restoration by dike removal. The success of restoration is often measured by the return of marsh plants, though this overlooks a key component of salt marshes, that of the invertebrate community within marsh sediments. To evaluate the short-term recovery of these invertebrates, sediment cores were collected across an elevational gradient in a recent dike removal marsh, one and two years post removal, and a nearby reference marsh. Abundance, richness and diversity as well as morphospecies community composition were compared across treatment groups (Reference, Removal) and elevation zone (High Marsh, Low Marsh). Morphospecies richness, abundance and diversity were significantly higher in Low Marsh samples than in High Marsh samples, though no statistically significant differences were found across treatments of the same elevation (e.g., Reference Low Marsh versus Removal Low Marsh). Pair-wise ANOSIM results found significant differences between community compositions across treatments, specifically Reference Low Marsh and Removal Low Marsh.
The marsh edge, the lowest point of vascular plant growth before transitioning to tide flats, is considered a high stress environment for emergent vegetation. Plant establishment and survival in this low elevation zone is limited by the tolerance to inundation duration and frequency and anoxic sediments. Bioturbation and burrowing by macroinvertebrates increases the surface area exposed to surface water for gas exchange, increasing the depth of the redox potential discontinuity layer. Crabs that make stable, maintained burrows have been shown to increase oxygen penetration into sediment, improving plant productivity. Such crabs are not found in salt marshes of the Pacific Northwest of North America. However, other burrowing invertebrates may have a positive impact on plant health in these areas by reducing abiotic stress due to anoxic sediments, thereby allowing plants to establish and survive lower in the intertidal zone. To assess this potential relationship, study plots of Distichlis spicata were selected at equivalent elevations at the lowest point of plant establishment at the marsh edge. Focal plant rhizomes were severed from upland ramets and assigned an invertebrate abundance treatment based on a visual burrow count surrounding each plant (9 cm diameter). Focal plants were visited monthly from July to September 2016, plant health variables of chlorophyll content and chlorophyll fluorescence (photosynthetic efficiency), and sediment ORP readings were collected. Plant survivorship was significantly higher in plots with invertebrates, 96% of plants in 'With Invertebrate' plots and 50% of plants in 'No Invertebrates' plots survived the duration of the study. Plant health (chlorophyll content and chlorophyll fluorescence) generally increased with increased invertebrate presence though, not statistically significant. There may be potential for improved plant productivity and resilience to plants at the marsh edge due to invertebrate burrowing activity. This benefit could help mitigate projected losses in plant productivity due to sea level rise, though more research is needed to investigate the mechanism by which these invertebrates confer a health benefit to plants at the marsh edge.
|
73 |
The molecular mechanisms underlying epigenetics of the stress response in the cerebellum in a rat modelBabenko, Olena Mykolayivna, University of Lethbridge. Faculty of Arts and Science January 2010 (has links)
Previous findings showed that mild chronic restraint stress causes motor impairments in rats. These behavioural impairments might be related to molecular changes in brain areas that regulate motor functions, such as the cerebellum. Little is known about the role of the cerebellum in stress-induced behavioural alteration. We hypothesized that alteration in animal behaviour after chronic restraint stress is due to brain-specific changes in miRNA and proteins encoding gene expression. Our results revealed that expression of three miRNAs and 39 mRNAs was changed significantly after two weeks of stress. Furthermore, we verified one putative target for one of the changed miRNAs and expression of four randomly selected genes. Changes in gene expression disappeared after two weeks of recovery from stress. These findings provide a novel insight into stress-related mechanisms of gene expression underlying altered behavioural performance. The observations bear implications for the prevention and treatment of stress-related disorders and disease. / xii, 109 leaves. : ill. ; 29 cm
|
74 |
Transgenerational inheritance of epigenetic response to abiotic stress in Arabidopsis thalianaMigicovsky, Zoë January 2012 (has links)
Abiotic stresses are one of the major limiting factors of plant growth and thus
crop productivity. Exposure to these stresses, including temperature and UV, cause
physiological and epigenetic changes in plants. Such changes may be inherited in the
progeny of stressed plants, and may change their ability to respond to stress. To
understand the ability of plants to inherit an epigenetic stress memory as well as the
physiological manifestations of such a memory, we propagated both stressed and control
plants and compared the progeny under both normal and stressed conditions. In addition
to wild-type plants we used Dicer-like mutants dcl2, dcl3 and dcl4, as Dicers have been
linked to RNA-directed DNA methylation, a form of epigenetic memory. These studies
revealed that leaf number decreases in the progeny of stressed plants, and bolting occurs
earlier in the progeny of temperature stressed plants but later in the progeny of UV-C
stressed plants. Transposons were also re-activated in the progeny of stressed plants.
While heat shock transcription factor 2A increased expression in the progeny of heat
stressed plants, many genes involved in DNA repair and histone modifications decreased.
DCL2 and DCL3 appeared to be more important in transgenerational stress memory than
DCL4. However, all dcl plants were generally not significantly different than wild-type
plants, indicating that a single DCL deficiency may be compensated for by another DCL. / xiv, 246 leaves : ill. ; 29 cm
|
75 |
The effects of isolation and restraint stress, and cortisol, on the responsiveness of the anterior pituitary to gonadotrophin-releasing hormone in rams and ewesStackpole, Catherine Amelia January 2004 (has links)
Abstract not available
|
76 |
The Impact of Developmental Stress on Cardiovascular Physiology of Two Archosaur Species: American Alligator (Alligator mississippiensis) and Domestic Chicken (Gallus gallus)Tate, Kevin B. 12 1900 (has links)
Crocodilians and birds comprise sister taxa of archosaurs, the development of these vertebrates occurs within an egg case that leaves developing embryos susceptible to fluctuations in the nesting environment. Studies suggest that sub-optimal conditions alter morphological growth and cardiovascular physiology. Regulation of the cardiovascular system is immature in the subjects studied, and embryos may rely on humoral rather than neural control of the cardiovascular system. The primary focus of this dissertation was to assess regulatory mechanisms responsible for maintenance of arterial pressure and heart rate. Dehydration stress had marked effects on embryo growth, and altered baseline cardiovascular parameters, while leaving the response to humoral regulator, angiotensin II (Ang II), unaffected. However, dehydrated alligator embryos developed cholinergic tone on heart rate. Hypoxic incubated chicken embryos were reduced in embryo mass, and altered response to humoral regulatory components Ang I and adenosine in addition identifying a novel regulatory component of the cardiovascular response to acute hypoxia. Collectively, these studies add to the existing knowledge of cardiovascular physiology in embryonic archosaurs and suggest that some components of cardiovascular regulation are plastic following developmental stress.
|
77 |
The alleviation of salinity induced stress with the application of silicon in soilless grown Lactuca sativa L. ’Eish!’Milne, Christopher Jodi January 2012 (has links)
Thesis submitted in fulfilment of the requirements for the degree Master of Technology: Horticulture in the Faculty of Applied Sciences at the Cape Peninsula University of Technology, 2012 / This article based thesis includes two individual studies evaluating the role of silicon (Si) in mitigating the negative effects that are associated with sodium chloride (NaCl) induced toxicity in lettuce (Lactuca sative L. 'Eish!').
|
78 |
Individual and population responses to abiotic stresses in Italian ryegrass (Lolium multiflorum Lam.)Martinez-Ghersa, Maria Alejandra 15 March 2004 (has links)
Plant form is a compromise between resource gathering, reproduction and
the tolerance to physical demands of the abiotic and biotic environment. In
an agricultural field in addition to the natural factors causing stress, humans
also introduce physical and mechanical stresses, and chemical pesticides
into the environment. Many of these factors are hazardous, since they
represent stresses to which plants are unable to develop defense
mechanisms. However, weeds have persisted in the agricultural
environment despite the efforts to eradicate them. They have adapted to
environmental changes such as crop rotation and have developed tolerance
to stressors like pesticides in very short periods of times (less than 10
years), much less time than normally expected for evolutionary responses
to occur. Perhaps a key to why weeds persist in stress-dominated habitats
is the way they compromise between yield and survival. The mechanisms
that explain which process is relevant in the control of seed production or
seedling growth relate to the ecophysiology of the individual plants.
However, trade-offs between plants physiological functions will have
implications at both population and community levels.
Climate change, air pollution and water scarcity are examples of
environmental stresses that particularly affect agriculture. Herbicides are a
major technological tool for agriculture and are responsible, at least in part,
for significant increases in crop production during the last quarter of the
century. The research presented in this dissertation was developed to
understand the extent that individual responses to multiple environmental
stresses can be extrapolated to population-level responses in an annual
weed species.
The specific objectives were to assess (1) the impact of three
anthropogenic stresses (herbicide, UVB light and ozone) and their
interactions on individual Italian ryegrass ontogeny and reproduction and
(2) the potential evolutionary effect of these stresses and combinations on
changes in population size and structure over time.
Plants were capable of growth and reproductive compensation under
the studied stresses. Stress factors with similar biochemical
mechanisms had different effects at the individual plant and population
levels of organization. Compensation occurred at all levels of
organization: as individuals modifying growth and allocation to different
organs and as populations modifying birth, and death rates and density
dependent responses. The ability to compensate sometimes decreased
with the number of stress factors (e.g. herbicide and UVB). In other
cases, compensation ability increased with the number of stress factors
(e.g. ozone and herbicide). / Graduation date: 2004
|
79 |
Transgenerational changes in progeny of compatible pathogen infected plantsKathiria, Palak, University of Lethbridge. Faculty of Arts and Science January 2010 (has links)
[No abstract available] / xi, 176 leaves : ill. (chiefly col.) ; 29 cm
|
80 |
Stress markers as indicators of fermentative ability of a Saccharomyces cerevisiae brewery strainBoudler, Sabrina 10 1900 (has links)
Thesis (MSc)--University of Stellenbosch, 2005. / ENGLISH ABSTRACT: In the brewing industry yeast cells are re-used in successive fermentations. Consequently,
the state of the cells at the end of each successive fermentation could impact on the
quality of the subsequent fermentations. The use of markers to evaluate the fermentative
ability of yeast to resist stress enables brewers to select populations of yeast for brewing.
Yeasts are typically exposed to osmotic-, ethanol- and cold-stress during the high-gravity
brewing process. In this study the vitality of the yeast cells was monitored during and
after each successive high-gravity brewing fermentation. This was done by measuring the
cell metabolites, which included glycerol, trehalose and glycogen. Others markers that
were evaluated for yeast viability were the number of budding scars, the levels of activity
of the enzymes neutral trehalase and esterase and the expression level of the heat shock
protein Hsp12p. Coupled to these evaluations, the growth of the yeast and the utilisation
of the sugars glucose, fructose, maltose and maltotriose were monitored during the
fermentations. The experiments were conducted in 2-litre E.B.C. tubes at either 14 oC or
at 18oC using standard techniques.
Comparable growth patterns were obtained for different re-pitching fermentations, with
fermentation 1 at 18ºC and 5 and 6 at 14°C being the most active fermentations. The
higher temperature encouraged more rapid growth and a greater numbers of cells. The
wort attenuation was more rapid at 18°C than at 14°C. Glucose and fructose in wort were
utilised prior to maltose and maltotriose. At 18°C the yeast consumed the sugars faster,
with mean utilisation values of 97.3% glucose, 100% fructose, 59.9% maltose and 65.6%
maltotriose. At the lower temperature of 14°C high concentrations of residual sugars
remained at the end of the fermentation. All re-pitching fermentations revealed lower
viabilities at 18°C in comparison to the 14°C fermentations.
Simultaneously, a number of other markers were evaluated. The intracellular trehalose
concentration per cell varied considerably with each fermentation. Trehalose levels at
18°C gradually increased in concentration from 48h until the end of the stationary phase. Much lower trehalose concentrations were observed in fermentations conducted at 14°C.
Higher and more consistent glycerol concentrations were found in fermentations at 14°C
with mean concentrations of 12 mg/g dry weight at pitching. The expression of the heat
shock protein Hsp12p level increased during the fermentation but no sharp increase was
detected in any particular fermentation. No increase in yeast budding scar number was
observed during re-pitching fermentations. Neutral trehalase and esterase activities in
fermentations at 18°C were especially high at pitching. Neutral trehalase activities at
14°C were all generally lower than in the case of fermentations at 18°C.
The fermentation ability of flocculated yeast in slurry and yeast suspended in beer was
investigated after exposure to various stresses. The aged yeast present in the slurry was
generally found to be more resistant to stress, in particularly to osmotic stress, throughout
the serial re-pitching process. The fermentation rates of both yeast types were especially
sensitive to prior exposure to ethanol stress. / AFRIKAANSE OPSOMMING: In die broubedryf word gisselle herhaaldelik gebruik vir agtereenvolgende fermentasies.
Derhalwe kan die toestand van die gisselle teen die einde van elke agtereenvolgende
fermentasie ‘n invloed hê op die kwaliteit van die daaropvolgende fermentasies. Deur
gebruik te maak van merkers om die fermentasievermoë van gis om stres te weerstaan te
evalueer, stel dit bierbrouers in staat om gispopulasies te selekteer. Gedurende die hoëdigtheid
brouproses word giste tipies aan osmotiese-, etanol- en koue-stres blootgestel. In
hierdie studie, gedurende hoë-digtheid fermentasies, is die lewensvatbaarheid van die
gisselle gedurende en na elke agtereenvolgende fermentasie gemonitor deur die volgende
selmetaboliete te bepaal: gliserol, trehalose en glikogeen. Bykomende merkers vir gis
lewensvatbaarheidsbepalings was: die aantal botselletsels, die vlakke van aktiwiteit van
die neutrale trehalose en esterase ensieme, en die uitdrukkingsvlak van die
hitteskokprotein Hsp12p. As aanvullende evaluasies is die groei van die gis en die
gebruik van die suikers glukose, fruktose, maltose en maltotriose gedurende fermentasies
gemonitor:. Die proewe is in 2-liter E.B.C. buise uitgevoer, by ‘n temperatuur van 14oC
of 18oC, deur van standaard tegnieke gebruik te maak.
Die groeipatrone van die verskillende herhaaldelike-inokulasie gistings was ongeveer
dieselfde. Fermentasie 1 by 18ºC en fermentasies 5 en 6 by 14°C was die mees aktiewe
fermentasies. Die hoër temperatuur het vinniger groei en ‘n groter aantal selle begunstig.
Die wortattenuasie was vinniger by 18°C as by 14°C. Glukose en fruktose in mout is
voor die maltose and maltotriose opgebruik. By 18°C het die gis die suikers vinniger
opgebruik. Gemiddelde gebruikswaardes vir die sewe reeksgewyse fermentasies was die
volgende: 97.3% glukose, 100% fruktose, 59.9% maltose en 65.6% maltotriose. Teen die
einde van fermentasie by 14°C was daar hoë konsentrasies van die oorblywende suikers,
hoofsaaklik na fermentasie 1. Alle herhaaldelike inokulasie fermentasies het lae
lewensvatbaarheid by 18°C in vergelyking met 14°C fermentasies getoon.
Ander merkers is ook gelyktydig gebruik. In die verskillende fermentasies was daar ‘n
groot verskil in die intrasellulêre trehalose konsentrasie per sel. Trehalose konsentrasies
by 18°C het geleidelik toegeneem, vanaf 48 uur tot aan die einde van die stationêre fase. Baie laer trehalose konsentrasies is gemeet vir fermentasies by 14°C. In fermentasies by
14°C was die gliserolkonsentrasies hoër en meer konstant. Gemiddelde konsentrasies was
12mg/g 14°droë gewig by inokulasie. Die uitdrukking van die hitteskokproteien Hsp12p
vlak het gedurende fermentasie toegeneem, maar daar was geen skerp toename vir die
afsonderlike fermentasies nie. Die bepaling van die aantal botselletsels per sel het daarop
gewys dat die gemiddelde aantal nie toegeneem het met die veroudering van die gis
gedurende reeksgewyse herhaaldelike inokulasie nie. Neutrale trehalase aktiwiteite in
fermentasies by 18°C was besonders hoog, veral by inokulasie. Die neutrale trehalase
aktiwiteite in die fermentasies by 14°C was in die algemeen laer as die by 18°C.
Die fermentasievermoë van die geflokkuleerde gis in die sediment en gesuspendeerde gis
in die bier is ondersoek na blootstelling aan verskeie tipes stres. Die verouderde gis
teenwoordig in die sediment was in die algemeen meer bestand teen stres, veral aan
osmotiese stres, dwarsdeur die reeksgewyse herhaaldelike inokulasie proses. Etanolstres
het die gistingstempo van beide giste dieselfde geaffekteer.
|
Page generated in 0.07 seconds