• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Manufacturihng of heavy rings and large copper canisters by plastic deformation

Ssemakula, Hamzah January 2003 (has links)
Plastic deformation processes transform material fromas-received state to products meeting certain requirements inproperties, microstructure and shape. To achieve thistransformation, the relationship between material response andprocess conditions should be understood. This is usuallycomplicated by the complex conditions describing the actualprocess. Numerous techniques including empirical, physical,analytical and numerical can be employed. In this thesis, numerical technique supported by lab- andfull-scale experiments has been employed to analyse the formingparameters. The first part of the thesis is focused on the useof such parameters to predict occurrence of material poresduring manufacturing of bearing rings. The second part dealswith the influence of forming parameters on the grain sizeduring fabrication of large copper canisters for encapsulationof nuclear waste. The primary task has been to study with thehelp of commercial FE-codes the magnitude and distribution offorming parameters such as accumulated effective strain,temperature, instantaneous hydrostatic pressure and materialflow at different stages of the forming process. In the firstpart, two types of ring manufacturing routes, which result inpore free and pore loaded rings are studied and compared.Material elements located in different areas of the workpiecehave been traced throughout the process. Results of theaccumulated strain and instant hydrostatic pressure have beenanalysed and presented in pressure-strain space. It’sassumed that high hydrostatic pressures together with higheffective strains are favourable for pore closure. Area of theworkpiece with unfavourable parameters have been identified andcompared with ultrasonic test results. Good agreement has beenobtained. Based on the results of this analysis, a new conceptfor avoiding pores in manufacturing of yet heavier rings hasbeen presented. The concept proposes a lighter upsetting in theinitial stage of the process and a more efficient piercingwhich results in higher hydrostatic pressure and bigger andbetter distributed effective strain. In the second part of the thesis, the influence of formingparameters such as effective strain and temperature on thefinal grain size of the product has been studied in laboratoryscale. As-cast billets of cylindrical shape were extruded atdifferent temperatures and reductions. It has been shown thatthe grain size in the final product should be small in order toenable ultrasonic tests and to guarantee resistance towardscreep and corrosion. Simulations for different materialelements located at different distances from the axis ofsymmetry of the initial cylindrical workpiece have been carriedout. In this way, the parameters describing the deformationhistory of the elements have been determined as functions oftime. Experimentally obtained pre- and post deformation grainsize in the corresponding locations of the material weredetermined. It’s concluded that low temperature coupledwith high effective strain are conducive for obtaining a smallgrain size. Based on the beneficial conditions for extrusion ofcopper, a more detailed FE-analysis of a full-scale industrialprocess is carried out. A coarse-grained cast ingot of purecopper is heated and by upset forging formed into a cylinder,which is then punched into a hollow blank for subsequentextrusion. The blank is extruded over a mandrel through a45-degree semi-angle die. Accumulated effective strain andtemperatureas functions of the tubular wall thickness havebeen studied at five different locations along the tubularaxis. Forming load requirement as function of tool displacementfor each stage of the process has been determined. Strain andtemperature levels obtained have been related to the grain sizeinterval obtained in the earlier work. It has been concludedthat the levels reached are within the interval that ensures asmall grain size. A similar analysis has been carried out forforging of large copper lids and bottoms. Die designmodifications to improve the grain size in the lid and tooptimise the forging process with respect to forging load andmaterial yield have been proposed. A method requiring a smallforging load for fabrication of the lids has been analysed <b>Keywords:</b>Pores; grain size; low forging load; effective strain;temperature; hydrostatic pressure; extrusion; forging;canister; lid; rings
2

Manufacturihng of heavy rings and large copper canisters by plastic deformation

Ssemakula, Hamzah January 2003 (has links)
<p>Plastic deformation processes transform material fromas-received state to products meeting certain requirements inproperties, microstructure and shape. To achieve thistransformation, the relationship between material response andprocess conditions should be understood. This is usuallycomplicated by the complex conditions describing the actualprocess. Numerous techniques including empirical, physical,analytical and numerical can be employed.</p><p>In this thesis, numerical technique supported by lab- andfull-scale experiments has been employed to analyse the formingparameters. The first part of the thesis is focused on the useof such parameters to predict occurrence of material poresduring manufacturing of bearing rings. The second part dealswith the influence of forming parameters on the grain sizeduring fabrication of large copper canisters for encapsulationof nuclear waste. The primary task has been to study with thehelp of commercial FE-codes the magnitude and distribution offorming parameters such as accumulated effective strain,temperature, instantaneous hydrostatic pressure and materialflow at different stages of the forming process. In the firstpart, two types of ring manufacturing routes, which result inpore free and pore loaded rings are studied and compared.Material elements located in different areas of the workpiecehave been traced throughout the process. Results of theaccumulated strain and instant hydrostatic pressure have beenanalysed and presented in pressure-strain space. It’sassumed that high hydrostatic pressures together with higheffective strains are favourable for pore closure. Area of theworkpiece with unfavourable parameters have been identified andcompared with ultrasonic test results. Good agreement has beenobtained. Based on the results of this analysis, a new conceptfor avoiding pores in manufacturing of yet heavier rings hasbeen presented. The concept proposes a lighter upsetting in theinitial stage of the process and a more efficient piercingwhich results in higher hydrostatic pressure and bigger andbetter distributed effective strain.</p><p>In the second part of the thesis, the influence of formingparameters such as effective strain and temperature on thefinal grain size of the product has been studied in laboratoryscale. As-cast billets of cylindrical shape were extruded atdifferent temperatures and reductions. It has been shown thatthe grain size in the final product should be small in order toenable ultrasonic tests and to guarantee resistance towardscreep and corrosion. Simulations for different materialelements located at different distances from the axis ofsymmetry of the initial cylindrical workpiece have been carriedout. In this way, the parameters describing the deformationhistory of the elements have been determined as functions oftime. Experimentally obtained pre- and post deformation grainsize in the corresponding locations of the material weredetermined. It’s concluded that low temperature coupledwith high effective strain are conducive for obtaining a smallgrain size. Based on the beneficial conditions for extrusion ofcopper, a more detailed FE-analysis of a full-scale industrialprocess is carried out. A coarse-grained cast ingot of purecopper is heated and by upset forging formed into a cylinder,which is then punched into a hollow blank for subsequentextrusion. The blank is extruded over a mandrel through a45-degree semi-angle die. Accumulated effective strain andtemperatureas functions of the tubular wall thickness havebeen studied at five different locations along the tubularaxis. Forming load requirement as function of tool displacementfor each stage of the process has been determined. Strain andtemperature levels obtained have been related to the grain sizeinterval obtained in the earlier work. It has been concludedthat the levels reached are within the interval that ensures asmall grain size. A similar analysis has been carried out forforging of large copper lids and bottoms. Die designmodifications to improve the grain size in the lid and tooptimise the forging process with respect to forging load andmaterial yield have been proposed. A method requiring a smallforging load for fabrication of the lids has been analysed</p><p><b>Keywords:</b><i>Pores; grain size; low forging load; effective strain;temperature; hydrostatic pressure; extrusion; forging;canister; lid; rings</i></p>
3

Abordagem micromecânica da resistência de meios porosos / Micromechanics approach the resistance of porous media

Dantas, David Anderson Cardoso 28 March 2013 (has links)
This works presents a study about effective properties of porous solids with nonlinear elastic and elastoplastic matrix. For macroscopic mechanics properties evaluation, micromechanics models are used with effective strain concept relative to the modified second method. The porous are assumed as randomly distributed in the matrix, which presents a constitutive law with linear behavior in dilatation and nonlinear in shear. The results are compared with those provided by finite element methods program ABAQUS, assuming porous with spherical geometry for three dimensional solids. Numerical results from ABAQUS were obtained by an implementation of an external subroutine which incorporates at analysis the nonlinear constitutive law. / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico / Este trabalho apresenta um estudo sobre as propriedades efetivas de sólidos porosos com matriz elástica não linear e elastoplástica. Na avaliação das propriedades mecânicas macroscópicas empregam-se modelos micromecânicos lineares em conjunto com o conceito de deformação efetiva correspondente ao método secante modificado. Os poros são admitidos como distribuídos randomicamente na matriz, a qual apresenta uma lei constitutiva caracterizada por um comportamento linear em dilatação e não linear em cisalhamento. Os resultados obtidos são confrontados com aqueles fornecidos pelo programa comercial de elementos finitos ABAQUS, admitindo-se que os poros exibem geometrias esféricas para sólidos tridimensionais. A geração dos resultados numéricos oriundos do programa ABAQUS foi viabilizada mediante a implementação de uma sub-rotina externa que incorpora a relação constitutiva não linear considerada nas análises.

Page generated in 0.0644 seconds