• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 2
  • 1
  • Tagged with
  • 11
  • 11
  • 7
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tortuosity estimate through paramagnetic gas diffusion in rock saturated with two fluids using T2 (z, t) low-field NMR

Shikhov, Igor, Arns, Christoph H. 11 September 2018 (has links)
Petrophysical interpretation of 1H NMR relaxation responses from saturated rocks is complicated by paramagnetic species present in fluids. Oxygen dissolved in liquids is one common example. Dipolar interactions of oxygen’s unpaired electron spins with the magnetic moment of fluid nuclei provide a strong relaxation mechanism known as paramagnetic relaxation enhancement (PRE). As a result even low concentrations of dioxygen in its common triplet ground state significantly shorten longitudinal and transverse relaxation times of host fluids. This effect may be employed similarly to any standard tracer technique to study pore connectivity in porous media by detecting a change of oxygen concentration due to diffusion resolved in time and space. Since relaxation enhancement effect is likely stronger in non-wetting phase than in wetting one (where surface relaxation process dominates) this difference can be utilized to study wettability in immiscible multiphase systems. We use a relaxation time contrast between air-saturated and oxygen-free fluids to evaluate oxygen concentration change within two fluid phases saturating rock, to estimate time required to establish equilibrium concentration and to calculate a mutual diffusion coefficient of oxygen. A spatially- and time-resolved T2(z,t) experiment provides the time-dependent oxygen concentration change along the fully- and partially-saturated carbonate core plug exposed to air saturated oil at its inlet. We derive an effective mutual diffusion coefficient of oxygen and accordingly a tortuosity estimate as a function of position along the core and rock saturation. The spatially resolved oxygen diffusion-based tortuosity is compared to simulated conductivitybased tortuosity. The latter is calculated on a high-resolution micro-tomographic image of Mount Gambier limestone by solving the Laplace equation for conductivity.
2

Mélange induit par un écoulement au travers un réseau aléatoire d’obstacles / Mixing induced by a flow through a random array of spheres

Besnaci, Cédric 17 January 2012 (has links)
Ce travail s’inscrit dans le cadre de nos recherches sur les écoulements à bulles. C’est l’étude expérimentale du mélange d’un traceur très peu diffusif (fluoresceine dans l’eau) dans l’écoulement instationnaire engendré par le passage d’un écoulement uniforme au travers d’un réseau d’obstacles sphériques (2% de fraction volumique) répartis aléatoirement dans l’espace. Cet écoulement reproduit correctement les caractéristiques de l’agitation dans un essaim de bulles en ascension. La vitesse du fluide est mesurée par PIV de manière assez classique. Le traceur est injecté en amont du réseau et l’´evolution de sa concentration est mesurée par PLIF. L’utilisation de la PLIF pour mesurer des champs de grande extension (15 cm) et avec une grande dynamique d’intensité lumineuse fluorescée constitue une contribution importante de ce travail. Les résultats ainsi obtenus montrent que, à petit nombre de Reynolds, le mélange est régi par les forts gradients de vitesse qui existent dans le voisinage des sphères. A grand nombre de Reynolds, il est maîtrisé par la turbulence qui se développe alors. L’analyse des résultats comporte deux parties principales : (1) une analyse statistique des profils de concentration aboutissant à la détermination d’un coefficient de diffusion effectif et (2) une description de la distribution spectrale des fluctuations de vitesse et de concentration. / This research is a part of our research about bubbly flows. Experiments are performed about mixing of a high Schmidt scalar component (fluorescein in water) by the agitation generated by the flow through a random array of fixed spheres (at high Re and with a volume fraction of solid equal to 2%). This flow mimics for a great part the agitation in the liquid phase of a bubble swarm rising in a liquid otherwise at rest. The velocity of the liquid is estimated from PIV measurements. The scalar is injected through a point source in the array and the evolution of its concentration is estimated by PLIF method. An important part of this research is the measurement of large fields of concentration (15 cm) with a good precision by PLIF. The results show that, at moderate Reynolds number (100), mixing is controled by the steep velocity gradients located near the spheres, while, at large Reynolds number, it is controled by the turbulence that develops. The analysis of the results is composed of two parts : (1) the statistical analysis of the spatial distribution of scalar concentration, and the determination of an effective diffusion coefficient, (2) a spectral analysis of the velocity and concentration fields.
3

Effective diffusion coefficients for charged porous materials based on micro-scale analyses

Mohajeri, Arash January 2009 (has links)
Estimation of effective diffusion coefficients is essential to be able to describe the diffusive transport of solutes in porous media. It has been shown in theory that in the case of uncharged porous materials the effective diffusion coefficient of solutes is a function of the pore morphology of the material and can be described by their tortuosity (tensor). To estimate the apparent diffusion coefficients, the values of tortuosity and porosity should be known first. In contrast with calculation of porosity, which can be easily obtained, estimation of tortuosity is intricate, particularly with increasing micro-geometry complexity in porous media. Moreover, many engineering materials (e.g, clays and shales) are characterized by electrical surface charges on particles of the porous material which can strongly affect the diffusive transport properties of ions. For these materials, estimation of effective diffusion coefficients have been mostly based on phenomenological equations with no link to underlying microscale properties of these charged materials although a few recent studies have used alternative methods to obtain the diffusion parameters. / In the first part of this thesis a numerical method based on a recently proposed up-scaled Poisson-Nernst-Planck type of equation (PNP) and its microscale counterpart is employed to estimate the tortuosity and thus the effective and apparent diffusion coefficients in thin charged membranes. Beside this, a new mathematical approach for estimation of tortuosity is applied and validated. This mathematical approach is also derived while upscaling of micro-scale Poisson-Nernst-Planck system of equations using the volume averaging method. A variety of different pore 2D and 3D micro-geometries together with different electrochemical conditions are studied here. To validate the new approaches, the relation between porosity and tortuosity has been obtained using a multi-scale approach and compared with published results. These include comparison with the results from a recently developed numerical method that is based on macro and micro-scale PNP equations. / Results confirm that the tortuosity value is the same for porous media with electrically uncharged and charged particles but only when using a consistent set of PNP equations. The effects of charged particles are captured by the ratio of average concentration to effective intrinsic concentration in the macroscopic PNP equations. Using this ratio allows to consistently take into account electro-chemical interactions of ions and charges on particles and so excludes any ambiguity generally encountered in phenomenological equations. / Steady-state diffusion studies dominate this thesis; however, understanding of transient ion transport in porous media is also important. The last section of this thesis briefly introduces transient diffusion through bentonite. To do so, the micro Nernst-Planck equation with electro-neutrality condition (NPE) is solved for a porous medium which consists of compacted bentonite. This system has been studied before in another research using an experimental approach and the results are available for both transient and steady-state phases. Three different conditions are assumed for NPE governing equations and then the numerical results from these three conditions are compared to the experimental values and analytical phenomenological solution. The tortuosity is treated as a fitting parameter and the effective diffusion coefficient can be calculated based on these tortuosity values. The results show that including a sorption term in the NPE equations can render similar results as the experimental values in transient and steady state phases. Also, as a fitting parameter, the tortuosity values were found varying with background concentration. This highlights the need to monitor multiple diffusing ion fluxes and membrane potential to fully characterize electro-diffusive transport from fundamental principles (which have been investigated in first part of this thesis) rather than phenomenological equations for predictive studies. / This research has lead to two different journal articles submissions, one already accepted in Computers and Geotechnics (October 22, 2009, 5-yrs Impact Factor 0.884) and the other one still under review.
4

Experimental and numerical investigation of consolidation-induced solute transport

Lee, Jangguen 20 September 2007 (has links)
No description available.
5

Experimental Measurement of Effective Diffusion Coefficient in Gas Diffusion Layer/Microporous Layer in PEM Fuel Cells

Chan, Carl 25 August 2011 (has links)
Accuracy in the effective diffusion coefficient of the gas diffusion layer (GDL)/microporous layer (MPL) is important to accurately predict the mass transport limitations for high current density operation of polymer electrolyte membrane (PEM) fuel cells. All the previous studies regarding mass transport limitations were limited to pure GDLs, and experimental analysis of the impact of the MPL on the overall diffusion in the porous GDL is still lacking. The MPL is known to provide beneficial water management properties at high current operating conditions of PEM fuel cells but its small pore sizes become a resistance in the diffusion path for mass transport to the catalyst layer. A modified Loschmidt cell with an oxygen-nitrogen mixture is used in this work to determine the effect of MPL on the effective diffusion coefficients. It is found that Knudsen effects play a dominant role in the diffusion through the MPL where pore diameters are less than 1 μm. Experimental results show that the effective diffusion coefficient of the MPL is only about 21% that of its GDL substrate and Knudsen diffusion accounts for 80% of the effective diffusion coefficient of the GDL with MPL measured in this study. No existing correlations can correlate the effective diffusion coefficient with significant Knudsen contribution.
6

Experimental Measurement of Effective Diffusion Coefficient in Gas Diffusion Layer/Microporous Layer in PEM Fuel Cells

Chan, Carl 25 August 2011 (has links)
Accuracy in the effective diffusion coefficient of the gas diffusion layer (GDL)/microporous layer (MPL) is important to accurately predict the mass transport limitations for high current density operation of polymer electrolyte membrane (PEM) fuel cells. All the previous studies regarding mass transport limitations were limited to pure GDLs, and experimental analysis of the impact of the MPL on the overall diffusion in the porous GDL is still lacking. The MPL is known to provide beneficial water management properties at high current operating conditions of PEM fuel cells but its small pore sizes become a resistance in the diffusion path for mass transport to the catalyst layer. A modified Loschmidt cell with an oxygen-nitrogen mixture is used in this work to determine the effect of MPL on the effective diffusion coefficients. It is found that Knudsen effects play a dominant role in the diffusion through the MPL where pore diameters are less than 1 μm. Experimental results show that the effective diffusion coefficient of the MPL is only about 21% that of its GDL substrate and Knudsen diffusion accounts for 80% of the effective diffusion coefficient of the GDL with MPL measured in this study. No existing correlations can correlate the effective diffusion coefficient with significant Knudsen contribution.
7

Effective-diffusion for general nonautonomous systems

January 2018 (has links)
abstract: The tools developed for the use of investigating dynamical systems have provided critical understanding to a wide range of physical phenomena. Here these tools are used to gain further insight into scalar transport, and how it is affected by mixing. The aim of this research is to investigate the efficiency of several different partitioning methods which demarcate flow fields into dynamically distinct regions, and the correlation of finite-time statistics from the advection-diffusion equation to these regions. For autonomous systems, invariant manifold theory can be used to separate the system into dynamically distinct regions. Despite there being no equivalent method for nonautonomous systems, a similar analysis can be done. Systems with general time dependencies must resort to using finite-time transport barriers for partitioning; these barriers are the edges of Lagrangian coherent structures (LCS), the analog to the stable and unstable manifolds of invariant manifold theory. Using the coherent structures of a flow to analyze the statistics of trapping, flight, and residence times, the signature of anomalous diffusion are obtained. This research also investigates the use of linear models for approximating the elements of the covariance matrix of nonlinear flows, and then applying the covariance matrix approximation over coherent regions. The first and second-order moments can be used to fully describe an ensemble evolution in linear systems, however there is no direct method for nonlinear systems. The problem is only compounded by the fact that the moments for nonlinear flows typically don't have analytic representations, therefore direct numerical simulations would be needed to obtain the moments throughout the domain. To circumvent these many computations, the nonlinear system is approximated as many linear systems for which analytic expressions for the moments exist. The parameters introduced in the linear models are obtained locally from the nonlinear deformation tensor. / Dissertation/Thesis / Doctoral Dissertation Applied Mathematics 2018
8

Využití difuzních technik při studiu reaktivity biokoloidů / Utilization of Diffusive Techniques in Study on Reactivity of Biocolloids

Kalina, Michal January 2015 (has links)
The main aim of this thesis is the utilization of simple diffusion techniques for the study on transport properties of copper ions in the systems containing humic acids with respect to the other parameters, which can affect the process (the structure of diffusion environment, the interactions between transported specie and diffusion matrices, selective blocking of binding sites of humic acids). The first part of experimental works was focused on characterization of studied materials (humic acids, humic sol and humic hydrogel). The main part of the thesis was dealing with the optimization of simple diffusion techniques, which were suitable for the study on transport of copper ions in matrices containing humic acids, taking into account the mutual interactions between studied components in the system. The obtained diffusion characteristics were compared to the data determined using sorption experiments. Consequently, the minor goal of the experimental works of this thesis was also the assessment of the influence of basic physico-chemical parameters of studied materials on transport phenomenon.
9

Difuzivita huminových hydrogelů / Diffusivity of humic hydrogels

Král, Jan January 2017 (has links)
Presented diploma thesis focuses on the study of diffusion of cupric ions in humic acid gels. A total of fifth different standards of humic acids and one sample humic acid prepared from same source as in bachelor's thesis, on which this thesis continues, were used for preparation solutions of humic acids. Thereafter, these solutions were used for preparation of agarose hydrogels, which were necessary in following diffusion experiments. The objective of the work was to compare transport properties of humic standards between themselves and then compare standards with humic acid prepared from same source as in bachelor's thesis. Measure, which was used to determine the transport properties, was comparison of effective diffusion coefficients. Method of instantaneous planar source diffusion was used to compare them. This method was based monitoring temporal evolution of diffusion profiles of cupric ions in humic hydrogels. Copper ions were selected as diffusing medium because of their high affinity and strong bonds to humic acids.
10

Corrosão, permeabilidade e danos provocados por hidrogênio em aços microligados. / Corrosion, Permeability and damage caused by hydrogen in microalloyed steels.

Hincapie-Ladino, Duberney 21 October 2016 (has links)
O objetivo deste trabalho é analisar e comparar o comportamento quanto à resistência à corrosão, permeabilidade de hidrogênio e sua relação com a susceptibilidade ao trincamento induzido por hidrogênio de aços ARBL, em ambientes contendo H2S, enfatizando a influência da microestrutura. Foram realizados tratamentos térmicos de normalização e têmpera (em água) de dois tipos de tubos API 5L X65 para aplicação sour service, obtendo-se três condições com diferentes microestruturas para cada tubo. Assim, as duas amostras tais como recebidas apresentavam microestruturas de: ferrita/perlita e, o outro, ferrita/ferrita acicular; após tratamento de normalização os dois tipos de amostras apresentaram microestrutura de ferrita/perlita; e, por último, os aços que passaram por têmpera constituíram-se de martensita. O eletrólito empregado foi a solução A (ácido acético contendo cloreto de sódio) da norma NACE TM0284-2011, saturado com H2S. Os materiais foram submetidos a: ensaios de polarização linear para determinação da Resistência de Polarização (Rp), ensaios de permeabilidade de hidrogênio - baseado na ASTM G148-2003 - e ensaios de resistência ao trincamento induzido por hidrogênio (HIC) segundo a norma NACE TM0284-2011; exames em microscópio óptico e eletrônico de varredura para caracterização microestrutural, da morfologia da corrosão e do trincamento. Após os ensaios de polarização linear, foi observada uma diferença pequena dos valores de Rp entre as diferentes amostras estudadas, entre 120 ?.cm2 e 210 ?.cm2; dentro desta faixa, as microestruturas de martensita (aços temperados) apresentaram a menor resistência à corrosão. Foi realizado o tratamento dos dados obtidos por polarização linear com a metodologia desenvolvida por Mansfeld (1973) para cálculo da taxa de corrosão, observando mudanças nos declives de Tafel evidenciando a formação de produtos de corrosão. Apesar da formação destes produtos a taxa de corrosão não foi afetada, já que estes produtos são dissolvidos na solução A, oferecendo uma baixa proteção contra à corrosão. Nos ensaios de permeabilidade de hidrogênio foi utilizada uma célula modificada tipo Devanathan-Stachurski, com a solução A, com injeção de H2S no lado de geração de hidrogênio e 0,2M NaOH no lado de detecção. Foi realizado o tratamento dos dados com o método tlag, calculando a difusividade aparente, concentração de hidrogênio no metal e quantidade de sítios de ancoramento de hidrogênio. Também foi utilizado um método de ajuste da curva experimental com a equação obtida a partir da segunda lei de Fick para calcular a difusividade aparente. Foram comparados os valores obtidos com os dois métodos, obtendo-se resultados similares de difusividade aparente. As amostras temperadas foram as que apresentaram menor difusividade aparente, maior concentração de hidrogênio e maior número de sítios de ancoramento. Após o ensaio de resistência ao trincamento induzido por hidrogênio os exames em microscópio óptico mostraram que as amostras de tubos API 5L X65 como recebidas e normalizadas não apresentaram trincamento, já as amostras que passaram por tratamento de têmpera apresentaram trincas. A realização dos ensaios e tratamento dos dados permitiram observar a relação entre a quantidade de interface e a taxa de corrosão: assim a microestrutura martensítica apresenta a maior taxa de corrosão devido a maior quantidade de interfaces. A difusividade de hidrogênio também é afetada por esta mesma microestrutura, por ter maior quantidade de interface e maior número de discordâncias, apresentando menor difusividade aparente, maior concentração de hidrogênio e maior quantidade de sítios de ancoramento, tem-se que a microestrutura de martensita apresenta maior susceptibilidade ao trincamento induzido por hidrogênio. A nucleação e propagação das trincas nesta microestrutura depende de vários mecanismos que atuam simultaneamente: (i) nucleação das microtrincas, (ii) formação de H2 nas microcavidades com aumento da pressão local e (iii) migração de átomos de hidrogênio até a ponta da trinca diminuindo a força coesiva do reticulado facilitando a propagação. No entanto, esta relação entre microestrutura e HIC não pode ser generalizada, pois a susceptibilidade ao trincamento depende tanto da quantidade de sítios de ancoramento, como de sua energia de ligação, localização microestrutural e tamanho destes sítios. Outro fator importante é a presença de regiões de pouca ductilidade onde as trincas nucleadas tenham maior facilidade para sua propagação. Este trabalho contribuiu para o melhor entendimento dos mecanismos que levam à fragilização e danos provocados pelo hidrogênio, mostrando a relação entre microestrutura, corrosão, difusão e trincamento. Permitiu ampliar o conhecimento sobre os testes utilizados para avaliar o desempenho de aços microligados para aplicações em ambientes severos. / Pipelines produced from High Strength Low Alloy steels (HSLA) are a safe and cheap way to transport large quantities of petroleum and gas. HSLA steels offers mechanical and economic advantages. When HSLA steels are exposed to environments containing hydrogen sulphide (H2S), the steel can corrode and generate atomic hydrogen in the surface wich can diffuse and trapped, leading loss of mechanical properties and subsequent failures. The infrastructure to transport oil and gas represent a high cost investment, in adittion, they must be free from degradation processes that can causes severe health and environmental impacts. For this reason, the development of materials with high performance in aggressive environments is required. The aim of this study is to analyze and compare the corrosion behavior, hydrogen permeability and its relation with the susceptibility to Hydrogen Induced Cracking (HIC) of HSLA steels in environments containing H2S, with emphasis on the influence of microstructure. Normalizing and quenching heat treatments were applied in two different API 5L X65 pipelines for sour service. Three conditions were obtained (as received, normalized and quenched). The as received has a microstructure of ferrite / pearlite and ferrite / acicular ferrite, respectively; the microstructure of normalized specimens consist of ferrite / pearlite and finally quenched steels presented a microstructure of martensite. Solution A (acetic acid containing sodium chloride), according to NACE TM0284-2011 standard and saturated with H2S was used. The materials were tested by linear polarization technique, hydrogen permeability and Hydrogen Induced Cracking test (HIC). HIC tests were performed according to NACE TM0284-2011 standard. Optical microscope and scanning electron microscope were used for microstructural, corrosion and cracking characterization. Rp values show a slight difference between the different samples studied (120 ?.cm2 e 210 ?.cm2); the martensite microstructure (quenched) showed the lower corrosion resistance. Mansfeld (1973) method was used to calculate the corrosion rates from polarization curves. The Tafel slopes are differents between samples making evident the formation of corrosion products. Despite the growth of those corrosion products, the corrosion rate was not affected, since these products are dissolved in the solution A, providing a low corrosion protection. A modified Devanathan-Stachurski cell was used for the hydrogen permeability tests. It was used the solution A, with injection of H2S in the charging cell, and 0.1M NaOH solution on the oxidation cell. The hydrogen effective diffusivity, sub-surface concentration of atomic hydrogen at the charging side and number of hydrogen-trap sites were calculate by tlag method. Moreover, the experimental data were fitted using an equation derived from Fick\'s second law, in order to determinate the diffusion coefficient. The diffusion coefficient obtained from both methods were compare showing similar results. The quenching samples showed the lower diffusion coefficient, higher hydrogen concentration and number of trap sites. The steels in the as received and normalized conditins did not show cracks in Hydrogen Induced Cracking test; in the other hand, quenched samples presents cracks. The results shoed the relationship between the amount of interface and the corrosion rate. Being the martensitic microstructure the one with the higher corrosion rate. The diffusion coefficient in the martensitic microstructure, is a result of the high amount of interfaces and high dislocation density, leading to a lower diffusion coefficient, higher hydrogen concentration and number of trap sites. In the Hydrogen induced Cracking test the martensitic microstructure has shown the lower resistance to crack. The nucleation and propagation of the cracks in martensite depend of mechanisms that may act simultaneously: (i) nucleation of micro-cracks in preferential sites, (ii) formation of H2 in micro-cavities, with increase the local pressure, and (iii) hydrogen migration to the tip of the crack, decreasing the cohesive force in the lattice. However, the relationship between microstructure and Hydrogen Induced Cracking can not be generalized, since the susceptibility to cracking depends of several factors, like number of trap sites, binding trap energy, microstructural distribution and trap sizes. In addition, the presence of regions of low ductility can result in easy cracks nucleation and propagation. This thesis contributed to the understanding of the mechanisms that lead to hydrogen embrittlement and hydrogen damage, showing the relationship between microstructure, corrosion rate, diffusion and cracking, I ncreasing the scientific knowledge about the standard tests actually used to evaluate the performance of microalloyed steels in sour environments.

Page generated in 0.152 seconds