• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 8
  • 3
  • 1
  • Tagged with
  • 23
  • 23
  • 12
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamic homogenization for the elastic properties of periodic and random composites

Willoughby, Natasha January 2013 (has links)
In this thesis we are interested in the propagation of low-frequency linear elastic waves through composite materials. We use a variety of dynamic homogenization techniques to find the effective elastic properties of some composites. We consider composites with isotropic phases for ease of exposition but the theory could easily be extended to anisotropic inclusions or host.We use a Representative Volume Element approach with the Method of Asymptotic Homogenization to model a random fibre-reinforced composite. The fibres are all aligned in the same direction and are taken to be of infinite extent, so the composite is essentially two-dimensional. For a random composite we have considered the anti-plane case for SH wave propagation and the in-plane case for P and SV elastic wave propagation, extending the previous published work of Parnell and Abrahams (2006), (2008a), in which a periodic fibre-reinforced composite was studied. We also show, for a simple example, that it is possible to extend the Representative Volume Element method to a three-dimensional particulate composite.In this thesis an Integral Equation Method for homogenization is also studied, with application to periodic fibre-reinforced composites. We have extended the work of Parnell and Abrahams (2008b), which considered SH wave propagation only, to the case of P and SV wave propagation.
2

Um estudo do método de homogeneização assimptótica visando aplicações em estruturas ósseas / A study of the asymptotic homogenization method for applications in bone structures

Silva, Uziel Paulo da 08 July 2009 (has links)
O osso é um sólido heterogêneo com estrutura bastante complexa que geralmente exige o emprego de múltiplas escalas em sua análise. A análise do comportamento eletromecânico da estrutura óssea tem sido realizada por meio de métodos da mecânica clássica, métodos de elementos finitos e métodos de homogeneização. Procura-se descrever matematicamente a relação entre o comportamento eletromecânico da estrutura óssea e as propriedades efetivas, ou, globais. Assim, muitos esforços têm sido despendidos para desenvolver modelos analíticos rigorosos capazes de predizer as propriedades globais e locais das estruturas ósseas. O propósito deste trabalho é estudar o método de Homogeneização Assimptótica (MHA) com a finalidade de determinar as propriedades eletromecânicas efetivas de estruturas heterogêneas, tais como a estrutura óssea. Inicialmente, são analisados o problema de condução de calor e o problema elástico e demonstra-se que estes problemas estão relacionados entre si. Para o problema de condução de calor, dois métodos para obter as constantes efetivas são apresentados. Além disso, uma aplicação do MHA em osso cortical é apresentada e os resultados estão de muito bom acordo com resultados encontrados na literatura. Em vista disto, verifica-se a possibilidade da aplicação do MHA para determinar as propriedades efetivas da estrutura óssea com estrutura cristalina na classe 622. / The bone is a heterogeneous solid with a highly complex structure that requires a multiple scale type of analysis. To analyze the electromechanical behavior of the bone structure, methods of classical mechanics, finite element methods, and methods of homogenization are being used. This analysis describes mathematically the relationship between the electromechanical behavior of the bone structure and its effective, or, global, properties. Thus, many efforts have been spent to develop rigorous analytical models capable of predicting the global and local effective properties of bone structures. The purpose of this work is to study the Asymptotic Homogenization Method (AHM) in order to determine the electromechanical effective properties of heterogeneous structures, such as the bone structure. The analysis of heat conduction and elastic problem using AHM shows that these problems are related to each other. Furthermore, an application of the AHM in cortical bone is presented and the results are shown to be in very good agreement with results found in the literature. Finally, this work shows great promise in the application of the AHM to determine the effective properties of a bone structure whose constituent material belongs to the crystal class 622.
3

Reduced Order Structural Modeling of Wind Turbine Blades

Jonnalagadda, Yellavenkatasunil 2011 August 1900 (has links)
Conventional three dimensional structural analysis methods prove to be expensive for the preliminary design of wind turbine blades. However, wind turbine blades are large slender members with complex cross sections. They can be accurately modeled using beam models. The accuracy in the predictions of the structural behavior using beam models depends on the accuracy in the prediction of their effective section properties. Several techniques were proposed in the literature for predicting the effective section properties. Most of these existing techniques have limitations because of the assumptions made in their approaches. Two generalized beam theories, Generalized Timoshenko and Generalized Euler-Bernoulli, for the static analysis based on the principles of the simple 1D-theories are developed here. Homogenization based on the strain energy equivalence principle is employed to predict the effective properties for these generalized beam theories. Two efficient methods, Quasi-3D and Unit Cell, are developed which can accurately predict the 3D deformations in beams under the six fundamental deformation modes: extension, two shears, torsion and two flexures. These methods help in predicting the effective properties using the homogenization technique. Also they can recover the detailed 3D deformations from the predictions of 1D beam analysis. The developed tools can analyze two types of slender members 1) slender members with invariant geometric features along the length and 2) slender members with periodically varying geometric features along the length. Several configurations were analyzed for the effective section properties and the predictions were validated using the expensive 3D analysis, strength of materials and Variational Asymptotic Beam Section Analysis (VABS). The predictions from the new tools showed excellent agreement with full 3D analysis. The predictions from the strength of materials showed disagreement in shear and torsional properties. Explanations for the same are provided recalling the assumptions made in the strength of materials approach.
4

Um estudo do método de homogeneização assimptótica visando aplicações em estruturas ósseas / A study of the asymptotic homogenization method for applications in bone structures

Uziel Paulo da Silva 08 July 2009 (has links)
O osso é um sólido heterogêneo com estrutura bastante complexa que geralmente exige o emprego de múltiplas escalas em sua análise. A análise do comportamento eletromecânico da estrutura óssea tem sido realizada por meio de métodos da mecânica clássica, métodos de elementos finitos e métodos de homogeneização. Procura-se descrever matematicamente a relação entre o comportamento eletromecânico da estrutura óssea e as propriedades efetivas, ou, globais. Assim, muitos esforços têm sido despendidos para desenvolver modelos analíticos rigorosos capazes de predizer as propriedades globais e locais das estruturas ósseas. O propósito deste trabalho é estudar o método de Homogeneização Assimptótica (MHA) com a finalidade de determinar as propriedades eletromecânicas efetivas de estruturas heterogêneas, tais como a estrutura óssea. Inicialmente, são analisados o problema de condução de calor e o problema elástico e demonstra-se que estes problemas estão relacionados entre si. Para o problema de condução de calor, dois métodos para obter as constantes efetivas são apresentados. Além disso, uma aplicação do MHA em osso cortical é apresentada e os resultados estão de muito bom acordo com resultados encontrados na literatura. Em vista disto, verifica-se a possibilidade da aplicação do MHA para determinar as propriedades efetivas da estrutura óssea com estrutura cristalina na classe 622. / The bone is a heterogeneous solid with a highly complex structure that requires a multiple scale type of analysis. To analyze the electromechanical behavior of the bone structure, methods of classical mechanics, finite element methods, and methods of homogenization are being used. This analysis describes mathematically the relationship between the electromechanical behavior of the bone structure and its effective, or, global, properties. Thus, many efforts have been spent to develop rigorous analytical models capable of predicting the global and local effective properties of bone structures. The purpose of this work is to study the Asymptotic Homogenization Method (AHM) in order to determine the electromechanical effective properties of heterogeneous structures, such as the bone structure. The analysis of heat conduction and elastic problem using AHM shows that these problems are related to each other. Furthermore, an application of the AHM in cortical bone is presented and the results are shown to be in very good agreement with results found in the literature. Finally, this work shows great promise in the application of the AHM to determine the effective properties of a bone structure whose constituent material belongs to the crystal class 622.
5

Modeling Diffusion and Buoyancy-Driven Convection with Application to Geological CO2 Storage

Allen, Rebecca 04 1900 (has links)
ABSTRACT Modeling Diffusion and Buoyancy-Driven Convection with Application to Geological CO2 Storage Rebecca Allen Geological CO2 storage is an engineering feat that has been undertaken around the world for more than two decades, thus accurate modeling of flow and transport behavior is of practical importance. Diffusive and convective transport are relevant processes for buoyancy-driven convection of CO2 into underlying fluid, a scenario that has received the attention of numerous modeling studies. While most studies focus on Darcy-scale modeling of this scenario, relatively little work exists at the pore-scale. In this work, properties evaluated at the pore-scale are used to investigate the transport behavior modeled at the Darcy-scale. We compute permeability and two different forms of tortuosity, namely hydraulic and diffusive. By generating various pore ge- ometries, we find hydraulic and diffusive tortuosity can be quantitatively different in the same pore geometry by up to a factor of ten. As such, we emphasize that these tortuosities should not be used interchangeably. We find pore geometries that are characterized by anisotropic permeability can also exhibit anisotropic diffusive tortuosity. This finding has important implications for buoyancy-driven convection modeling; when representing the geological formation with an anisotropic permeabil- ity, it is more realistic to also account for an anisotropic diffusivity. By implementing a non-dimensional model that includes both a vertically and horizontally orientated 5 Rayleigh number, we interpret our findings according to the combined effect of the anisotropy from permeability and diffusive tortuosity. In particular, we observe the Rayleigh ratio may either dampen or enhance the diffusing front, and our simulation data is used to express the time of convective onset as a function of the Rayleigh ratio. Also, we implement a lattice Boltzmann model for thermal convective flows, which we treat as an analog for CO2 storage modeling. Our model contains the multiple- relaxation-time scheme and moment-based boundary conditions to avoid the numer- ical slip error that is associated with standard bounce-back. The model’s accuracy and robustness is demonstrated by an excellent agreement between our results and benchmark data for thermal flows ranging from Ra = 103 to 108. Our thermal model captures analogous flow behavior to that of CO2 through fluid-filled porous media, including the transition from diffusive transport to initiation and development of convective fingering.
6

Variational Asymptotic Micromechanics Modeling of Composite Materials

Tang, Tian 01 December 2008 (has links)
The issue of accurately determining the effective properties of composite materials has received the attention of numerous researchers in the last few decades and continues to be in the forefront of material research. Micromechanics models have been proven to be very useful tools for design and analysis of composite materials. In the present work, a versatile micromechanics modeling framework, namely, the Variational Asymptotic Method for Unit Cell Homogenization (VAMUCH), has been invented and various micromechancis models have been constructed in light of this novel framework. Considering the periodicity as a small parameter, we can formulate the variational statements of the unit cell through an asymptotic expansion of the energy functional. It is shown that the governing differential equations and periodic boundary conditions of mathematical homogenization theories (MHT) can be reproduced from this variational statement. Finally, we employed the finite element method to solve the numerical solution of the constrained minimization problem. If the local fields within the unit cell are of interest, the proposed models can also accurately recover those fields based on the global behavior. In comparison to other existing models, the advantages of VAMUCH are: (1) it invokes only two essential assumptions within the concept of micromechanics for heterogeneous material with identifiable unit cells; (2) it has an inherent variational nature and its numerical implementation is shown to be straightforward; (3) it calculates the different material properties in different directions simultaneously, which is more efficient than those approaches requiring multiple runs under different loading conditions; and (4) it calculates the effective properties and the local fields directly with the same accuracy as the fluctuation functions. No postprocessing calculations such as stress averaging and strain averaging are needed. The present theory is implemented in the computer program VAMUCH, a versatile engineering code for the homogenization of heterogeneous materials. This new micromechanics modeling approach has been successfully applied to predict the effective properties of composite materials including elastic properties, coefficients of thermal expansion, and specific heat and the effective properties of piezoelectric and electro-magneto-elastic composites. This approach has also been extended to the prediction of the nonlinear response of multiphase composites. Numerous examples have been utilized to clearly demonstrate its application and accuracy as a general-purpose micromechanical analysis tool.
7

Topics in the Physics of Inhomogeneous Materials

Barabash, Sergey V. 30 July 2003 (has links)
No description available.
8

Homogénéisation des interfaces ondulées dans les composites / Homogenization of rough interfaces in composites

Le, Huy Toan 15 March 2011 (has links)
Les surfaces et interfaces rugueuses sont rencontrées dans de nombreuses situations en mécanique et physique des solides. En particulier, une surface ou interface considérée comme lisse à une échelle donnée se révèle souvent rugueuse à autre échelle plus petite. Ce travail étudie les interfaces planes et courbées dont la rugosité peut être raisonnablement décrite comme des ondulations périodiques. Il a pour objectif de modéliser ces interfaces dans des composites et de déterminer leurs effets sur les propriétés effectives élastiques et conductrices des composites concernés. L'approche élaborée pour atteindre cet objectif consiste d'abord à utiliser l'analyse asymptotique pour modéliser une zone d'interface rugueuse comme une interphase hétérogène uniquement suivant son épaisseur et ensuite à faire appel à des schémas micromécaniques pour quantifier les influences de cette interphase sur les propriétés effectives. Ce travail considère trois types de composites dans lesquels de s interfaces périodiquement ondulées sont présentes : composites stratifiés, fibreux et à inclusions. Les résultats obtenus pour ces composites contribuent au développement de la micromécanique et apportent des solutions à des problèmes d'intérêt pratique rencontrés en physique et mécanique des matériaux hétérogènes / Rough surfaces and interfaces are encountered in many situations in mechanics and physics of solids. In particular, a surface or interface considered smooth at a given scale turns out often to be rough at another smaller scale. This work studies the flat and curved interfaces whose roughness can be reasonably described as periodic undulations. It aims to model these interfaces in composites and to determine their effects on the effective elastic and conductive properties of the composites in question. The approach elaborated to achieve this objective consists first in using asymptotic analysis to model a zone of rough interface as an interphase being heterogeneous only along its thickness direction and then in resorting to some micromechanical schemes to quantify the influences of the interphase on the effective properties. This work considers three types of composites in which periodically corrugated interfaces are present: laminated, fibrous and particulate composites. The results obtained for these composites contribute to the development of micromechanics and provide solutions to problems of practical interest encountered in physics and mechanics of heterogeneous materials
9

Emprego do método de homogeneização assintótica no cálculo das propriedades efetivas de estruturas ósseas / Using the asymptotic homogenization method to evaluate the effective properties of bone structures

Silva, Uziel Paulo da 28 May 2014 (has links)
Ossos são sólidos não homogêneos com estruturas altamente complexas que requerem uma modelagem multiescala para entender seu comportamento eletromecânico e seus mecanismos de remodelamento. O objetivo deste trabalho é encontrar expressões analíticas para as propriedades elástica, piezoelétrica e dielétrica efetivas de osso cortical modelando-o em duas escalas: microscópica e macroscópica. Utiliza-se o Método de Homogeneização Assintótica (MHA) para calcular as constantes eletromecânicas efetivas deste material. O MHA produz um procedimento em duas escalas que permite obter as propriedades efetivas de um material compósito contendo uma distribuição periódica de furos cilíndricos circulares unidirecionais em uma matriz piezoelétrica linear e transversalmente isotrópica. O material da matriz pertence à classe de simetria cristalina 622. Os furos estão centrados em células de uma matriz periódica de secções transversais quadradas e a periodicidade é a mesma em duas direções perpendiculares. O compósito piezoelétrico está sob cisalhamento antiplano acoplado a um campo elétrico plano. Os problemas locais que surgem da análise em duas escalas usando o MHA são resolvidos por meio de um método da teoria de variáveis complexas, o qual permite expandir as soluções correspondentes em séries de potências de funções elípticas de Weierstrass. Os coeficientes das séries são determinados das soluções de sistemas lineares infinitos de equações algébricas. Truncando estes sistemas infinitos até uma ordem finita de aproximação, obtêm-se fórmulas analíticas para as constantes efetivas elástica, piezoelétrica e dielétrica, que dependem da fração de volume dos furos e de um fator de acoplamento eletromecânico da matriz. Os resultados numéricos obtidos a partir destas fórmulas são comparados com resultados obtidos pelas fórmulas calculadas via método de Mori-Tanaka e apresentam boa concordância. A boa concordância entre todas as curvas obtidas via MHA sugere que a expressão correspondente da primeira aproximação fornece uma fórmula muito simples para calcular o fator de acoplamento efetivo do compósito. Os resultados são úteis na mecânica de osso. / Bones are inhomogeneous solids with highly complex structures that require multiscale modeling to understand its electromechanical behavior and its remodeling mechanisms. The objective of this work is to find analytical expressions for the effective elastic, piezoelectric, and dielectric properties of cortical bone by modeling it on two scales: microscopic and macroscopic. We use Asymptotic Homogenization Method (AHM) to calculate the effective electromechanical constants of this material. The AHM yields a two-scale procedure to obtain the effective properties of a composite material containing a periodic distribution of unidirectional circular cylindrical holes in a linear transversely isotropic piezoelectric matrix. The matrix material belongs to the symmetry crystal class 622. The holes are centered in a periodic array of cells of square cross sections and the periodicity is the same in two perpendicular directions. The piezoelectric composite is under antiplane shear deformation together with in-plane electric field. Local problems that arise from the two-scale analysis using the AHM are solved by means of a complex variable method, which allows us to expand the corresponding solutions in power series of Weierstrass elliptic functions. The coefficients of these series are determined from the solutions of infinite systems of linear algebraic equations. Truncating the infinite systems up to a finite, but otherwise arbitrary, order of approximation, we obtain analytical formulas for effective elastic, piezoelectric, and dielectric properties, which depend on both the volume fraction of the holes and an electromechanical coupling factor of the matrix. Numerical results obtained from these formulas are compared with results obtained by the Mori-Tanaka approach and show good agreement. The good agreement between all curves obtained via AHM suggests that the corresponding expression of first approximation provides a very simple formula to calculate the effective coupling factor of the composite. The results are useful in bone mechanics.
10

Acoustic wave propagation through a random dispersion of solid particles in a viscous fluid / Propagation d’onde ultrasonore au travers d’une distribution aléatoire de particules solides dans un fluide visqueux

Alam, MB Mahbub 12 September 2019 (has links)
La propagation d’une onde ultrasonore de compression au travers d’une distribution de particules solides identiques localisées aléatoirement dans un liquide visqueux est étudiée. La longueur d’onde de l’onde de compression est supposée grande devant le rayon des particules, et les propriétés effectives dynamiques du milieu sont recherchées.Les coefficients de diffusion d’une sphère solide isolée sont étudiés pour différentes polarisations des ondes partielles de mode n incidentes et diffusées. Des expressions approchées en sont données pour tout n dans le régime de diffusion de Rayleigh.Dans le cas de particules sphériques, le milieu est modélisé par un noyau élastique, de même matériau et rayon que les particules, et entouré d’une coque emplie du fluide hôte. L’ensemble est insoné, dans le milieu effectif, par une onde de compression partielle de mode n. Les propriétés effectives sont recherchées par minimisation de la diffusion pour différentes valeurs de n. Le module d’élasticité volumique effectif et la masse volumique effective sont obtenus respectivement à partir des modes n=0 et n=1. Comparée à la formule d’Ament, fondée sur l’équilibre des forces hydrodynamiques et inertielle au niveau de chaque particule supposée rigide, celle obtenue ici fait apparaître un effet de la concentration sur la dépendance fréquentielle de la masse volumique similaire à celui observé, expérimentalement et dans des modèles de diffusion multiple, sur les propriétés effectives des ondes de compression. La méthode d’Ament est ensuite appliquée pour obtenir la masse volumique effective dans le cas de sphéroïdes rigides alignés. / A random dispersion of identical elastic solid particles in a viscous fluid is considered and effective properties, appropriate to the propagation through the medium of an ultrasonic compressional wave of large wavelength compared to the radius of the particles, is investigated.The scattering coefficients of a single spherical particle in a viscous medium are investigated for all combinations of incident and scattered wave types for use in multiple scattering models. Approximate formulae are obtained for the coefficients at n’th partial wave order in the Rayleigh limit. For spherical particles, a core-shell self-consistent model is used, in which the medium is modelled by an elastic core of the same material and radius as the particles, surrounded by a shell of the host fluid, and placed in the effective medium. The radius of the shell is such that the ratio of the core/shell volume is equal to the particle concentration. The dynamic properties of the effective medium are sought by minimising the scattering of the shell for different incident compressional partial wave orders (n).The effective bulk modulus is found from the monopole mode n=0 and the effective mass density from the dipole mode n=1. When compared to Ament’s formula based on local force balance at the particles (assumed rigid), the effective mass density obtained from the core-shell model shows a frequency-dependent effect of concentration similar to that observed in multiple scattering models and experimentally. Ament’s method is then applied to obtain the effective mass density in case of aligned rigid spheroids.

Page generated in 0.0918 seconds