• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Emprego do método de homogeneização assintótica no cálculo das propriedades efetivas de estruturas ósseas / Using the asymptotic homogenization method to evaluate the effective properties of bone structures

Silva, Uziel Paulo da 28 May 2014 (has links)
Ossos são sólidos não homogêneos com estruturas altamente complexas que requerem uma modelagem multiescala para entender seu comportamento eletromecânico e seus mecanismos de remodelamento. O objetivo deste trabalho é encontrar expressões analíticas para as propriedades elástica, piezoelétrica e dielétrica efetivas de osso cortical modelando-o em duas escalas: microscópica e macroscópica. Utiliza-se o Método de Homogeneização Assintótica (MHA) para calcular as constantes eletromecânicas efetivas deste material. O MHA produz um procedimento em duas escalas que permite obter as propriedades efetivas de um material compósito contendo uma distribuição periódica de furos cilíndricos circulares unidirecionais em uma matriz piezoelétrica linear e transversalmente isotrópica. O material da matriz pertence à classe de simetria cristalina 622. Os furos estão centrados em células de uma matriz periódica de secções transversais quadradas e a periodicidade é a mesma em duas direções perpendiculares. O compósito piezoelétrico está sob cisalhamento antiplano acoplado a um campo elétrico plano. Os problemas locais que surgem da análise em duas escalas usando o MHA são resolvidos por meio de um método da teoria de variáveis complexas, o qual permite expandir as soluções correspondentes em séries de potências de funções elípticas de Weierstrass. Os coeficientes das séries são determinados das soluções de sistemas lineares infinitos de equações algébricas. Truncando estes sistemas infinitos até uma ordem finita de aproximação, obtêm-se fórmulas analíticas para as constantes efetivas elástica, piezoelétrica e dielétrica, que dependem da fração de volume dos furos e de um fator de acoplamento eletromecânico da matriz. Os resultados numéricos obtidos a partir destas fórmulas são comparados com resultados obtidos pelas fórmulas calculadas via método de Mori-Tanaka e apresentam boa concordância. A boa concordância entre todas as curvas obtidas via MHA sugere que a expressão correspondente da primeira aproximação fornece uma fórmula muito simples para calcular o fator de acoplamento efetivo do compósito. Os resultados são úteis na mecânica de osso. / Bones are inhomogeneous solids with highly complex structures that require multiscale modeling to understand its electromechanical behavior and its remodeling mechanisms. The objective of this work is to find analytical expressions for the effective elastic, piezoelectric, and dielectric properties of cortical bone by modeling it on two scales: microscopic and macroscopic. We use Asymptotic Homogenization Method (AHM) to calculate the effective electromechanical constants of this material. The AHM yields a two-scale procedure to obtain the effective properties of a composite material containing a periodic distribution of unidirectional circular cylindrical holes in a linear transversely isotropic piezoelectric matrix. The matrix material belongs to the symmetry crystal class 622. The holes are centered in a periodic array of cells of square cross sections and the periodicity is the same in two perpendicular directions. The piezoelectric composite is under antiplane shear deformation together with in-plane electric field. Local problems that arise from the two-scale analysis using the AHM are solved by means of a complex variable method, which allows us to expand the corresponding solutions in power series of Weierstrass elliptic functions. The coefficients of these series are determined from the solutions of infinite systems of linear algebraic equations. Truncating the infinite systems up to a finite, but otherwise arbitrary, order of approximation, we obtain analytical formulas for effective elastic, piezoelectric, and dielectric properties, which depend on both the volume fraction of the holes and an electromechanical coupling factor of the matrix. Numerical results obtained from these formulas are compared with results obtained by the Mori-Tanaka approach and show good agreement. The good agreement between all curves obtained via AHM suggests that the corresponding expression of first approximation provides a very simple formula to calculate the effective coupling factor of the composite. The results are useful in bone mechanics.
2

Emprego do método de homogeneização assintótica no cálculo das propriedades efetivas de estruturas ósseas / Using the asymptotic homogenization method to evaluate the effective properties of bone structures

Uziel Paulo da Silva 28 May 2014 (has links)
Ossos são sólidos não homogêneos com estruturas altamente complexas que requerem uma modelagem multiescala para entender seu comportamento eletromecânico e seus mecanismos de remodelamento. O objetivo deste trabalho é encontrar expressões analíticas para as propriedades elástica, piezoelétrica e dielétrica efetivas de osso cortical modelando-o em duas escalas: microscópica e macroscópica. Utiliza-se o Método de Homogeneização Assintótica (MHA) para calcular as constantes eletromecânicas efetivas deste material. O MHA produz um procedimento em duas escalas que permite obter as propriedades efetivas de um material compósito contendo uma distribuição periódica de furos cilíndricos circulares unidirecionais em uma matriz piezoelétrica linear e transversalmente isotrópica. O material da matriz pertence à classe de simetria cristalina 622. Os furos estão centrados em células de uma matriz periódica de secções transversais quadradas e a periodicidade é a mesma em duas direções perpendiculares. O compósito piezoelétrico está sob cisalhamento antiplano acoplado a um campo elétrico plano. Os problemas locais que surgem da análise em duas escalas usando o MHA são resolvidos por meio de um método da teoria de variáveis complexas, o qual permite expandir as soluções correspondentes em séries de potências de funções elípticas de Weierstrass. Os coeficientes das séries são determinados das soluções de sistemas lineares infinitos de equações algébricas. Truncando estes sistemas infinitos até uma ordem finita de aproximação, obtêm-se fórmulas analíticas para as constantes efetivas elástica, piezoelétrica e dielétrica, que dependem da fração de volume dos furos e de um fator de acoplamento eletromecânico da matriz. Os resultados numéricos obtidos a partir destas fórmulas são comparados com resultados obtidos pelas fórmulas calculadas via método de Mori-Tanaka e apresentam boa concordância. A boa concordância entre todas as curvas obtidas via MHA sugere que a expressão correspondente da primeira aproximação fornece uma fórmula muito simples para calcular o fator de acoplamento efetivo do compósito. Os resultados são úteis na mecânica de osso. / Bones are inhomogeneous solids with highly complex structures that require multiscale modeling to understand its electromechanical behavior and its remodeling mechanisms. The objective of this work is to find analytical expressions for the effective elastic, piezoelectric, and dielectric properties of cortical bone by modeling it on two scales: microscopic and macroscopic. We use Asymptotic Homogenization Method (AHM) to calculate the effective electromechanical constants of this material. The AHM yields a two-scale procedure to obtain the effective properties of a composite material containing a periodic distribution of unidirectional circular cylindrical holes in a linear transversely isotropic piezoelectric matrix. The matrix material belongs to the symmetry crystal class 622. The holes are centered in a periodic array of cells of square cross sections and the periodicity is the same in two perpendicular directions. The piezoelectric composite is under antiplane shear deformation together with in-plane electric field. Local problems that arise from the two-scale analysis using the AHM are solved by means of a complex variable method, which allows us to expand the corresponding solutions in power series of Weierstrass elliptic functions. The coefficients of these series are determined from the solutions of infinite systems of linear algebraic equations. Truncating the infinite systems up to a finite, but otherwise arbitrary, order of approximation, we obtain analytical formulas for effective elastic, piezoelectric, and dielectric properties, which depend on both the volume fraction of the holes and an electromechanical coupling factor of the matrix. Numerical results obtained from these formulas are compared with results obtained by the Mori-Tanaka approach and show good agreement. The good agreement between all curves obtained via AHM suggests that the corresponding expression of first approximation provides a very simple formula to calculate the effective coupling factor of the composite. The results are useful in bone mechanics.

Page generated in 0.1 seconds