• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Testing Models with Higher Dimensional Effective Interactions at the LHC and Dark Matter Experiments / Tests von Modellen mit höherdimensionalen effektiven Operatoren am LHC und Experimenten zur Suche dunkler Materie

Krauß, Martin Bernhard January 2013 (has links) (PDF)
Dark matter and non-zero neutrino masses are possible hints for new physics beyond the Standard Model of particle physics. Such potential consequences of new physics can be described by effective field theories in a model independent way. It is possible that the dominant contribution to low-energy effects of new physics is generated by operators of dimension d>5, e.g., due to an additional symmetry. Since these are more suppressed than the usually discussed lower dimensional operators, they can lead to extremly weak interactions even if new physics appears at comparatively low scales. Thus neutrino mass models can be connected to TeV scale physics, for instance. The possible existence of TeV scale particles is interesting, since they can be potentially observed at collider experiments, such as the Large Hadron Collider. Hence, we first recapitulate the generation of neutrino masses by higher dimensional effective operators in a supersymmetric framework. In addition, we discuss processes that can be used to test these models at the Large Hadron Collider. The introduction of new particles can affect the running of gauge couplings. Hence, we study the compatibilty of these models with Grand Unified Theories. The required extension of these models can imply the existence of new heavy quarks, which requires the consideration of cosmological constraints. Finally, higher dimensional effective operators can not only generate small neutrino masses. They also can be used to discuss the interactions relevant for dark matter detection experiments. Thus we apply the methods established for the study of neutrino mass models to the systematic discussion of higher dimensional effective operators generating dark matter interactions. / Dunkle Materie und nichtverschwindende Neutrinomassen sind nur zwei Hinweise auf das mögliche Vorhandensein neuer Physik jenseits des Standardmodells der Teilchenphysik. Solche möglichen Konsequenzen neuer Physik können modellunabhängig mit effektiven Feldtheorien beschrieben werden. Beispielsweise aufgrund zusätzlicher Symmetrien ist es möglich, dass Operatoren mit Dimension $d>5$ den dominanten Beitrag zu den Effekten neuer Physik bei niedrigen Energieskalen liefern. Da diese stärker unterdrückt sind als die gewöhnlicherweise betrachteten Operatoren niedrigerer Dimension, können sie zu äußerst schwachen Wechselwirkungen führen, selbst wenn neue Physik bereits bei vergleichsweise niedrigen Energien auftritt. Dies ermöglicht unter anderem neue Teilchen mit Massen im Bereich der TeV-Skala mit der Erzeugung der sehr geringen Neutrinomassen in Verbindung zu bringen. Solche Teilchen sind besonders interessant, da sie an Beschleunigerexperimenten wie dem Large Hadron Collider untersucht werden können. Deswegen wird in dieser Arbeit zunächst die Erzeugung von Neutrinomassen durch höherdimensionale effektive Operatoren in supersymmetrischen Modellen rekapituliert. Darüber hinaus sollen mögliche Prozesse zum Nachweis dieser Modelle am Large Hadron Collider anhand eines Beispiels diskutiert werden. Da das Einführen neuer Teilchen das Laufen der Kopplungskonstanten beeinflussen kann, wird ferner betrachtet, inwiefern solche Szenarien vereinbar mit großen vereinheitlichten Theorien (Grand Unified Theories) sind. Die entsprechende Erweiterung dieser Modelle kann beispielsweise das Auftreten neuer schwerer Quarks zur Folge haben, die auf ihre Vereinbarkeit mit kosmologischen Beobachtungen untersucht werden. Höherdimensionale Operatoren können jedoch nicht nur sehr kleine Neutrinomassen erzeugen, sondern auch für Experimente zum Nachweis dunkler Materie relevant sein. Daher sollen die zuvor angewandten Methoden zur systematischen Diskussion effektiver Operatoren, die Wechselwirkungen dunkler Materie beschreiben, verwendet werden.
2

The Noncommutative Standard Model : Construction Beyond Leading Order in Theta and Collider Phenomenology / Das Nichtkommutative StandardmodellKonstruktion jenseits der führenden Ordnung in Theta und Phänomenologie an Teilchenbeschleunigern

Alboteanu, Ana Maria January 2007 (has links) (PDF)
Trotz seiner präzisen Übereinstimmung mit dem Experiment ist die Gültigkeit des Standardmodells (SM) der Elementarteilchenphysik bislang nur bis zu einer Energieskala von einigen hundert GeV gesichert. Abgesehen davon erweist sich schon das Einbinden der Gravitation in einer einheitlichen Beschreibung aller fundamentalen Wechselwirkungen als ein durch gewöhnliche Quantenfeldtheorie nicht zu lösendes Problem. Das Interesse an Quantenfeldtheorien auf einer nichtkommutativen Raumzeit wurde durch deren Vorhersage als niederenergetischer Limes von Stringtheorien erweckt. Unabhängig davon, kann die Nichtlokalität einer solchen Theorie den Rahmen zur Einbeziehung der Gravitation in eine vereinheitlichende Theorie liefern. Die Hoffnung besteht, dass die Energieskala Lambda_NC, ab der solche Effekte sichtbar werden können und für die es einerlei theoretischen Vorhersagen gibt, schon bei der nächsten Generation von Beschleunigern erreicht wird. Auf dieser Annahme beruht auch die vorliegende Arbeit, im Rahmen deren eine mögliche Realisierung von Quantenfeldtheorien auf nichtkommutativer Raumzeit auf ihre phänomenologischen Konsequenzen hin untersucht wurde. Diese Arbeit ist durch fehlende LHC (Large Hadron Collider) Studien für nichkommutative Quantenfeldtheorien motiviert. Im ersten Teil des Vorhabens wurde der hadronische Prozess pp-> Z gamma -> l+l- gamma am LHC sowie die Elektron-Positron Paarvernichtung in ein Z-Boson und ein Photon am ILC (International Linear Collider) auf nichtkommutative Signale hin untersucht. Die phänomenlogischen Untersuchungen wurden im Rahmen dieses Modells in erster Ordnung des nichtkommutativen Parameters Theta durchgeführt. Eine nichtkommutative Raumzeit führt zur Brechung der Rotationsinvarianz bezüglich der Strahlrichtung der einlaufenden Teilchen. Im differentiellen Wirkungsquerschnitt für Streuprozesse äussert sich dieses als eine azimuthale Abhängigkeit, die weder im SM noch in anderen Modellen jenseits des SM auftritt. Diese klare, f\"ur nichtkommutative Theorien typische Signatur kann benutzt werden, um nichtkommutative Modelle von anderen Modellen, die neue Physik beschreiben, zu unterscheiden. Auch hat es sich erwiesen, dass die azimuthale Abhängigkeit des Wirkungsquerschnittes am besten daf\"ur geeignet ist, um die Sensitivität des LHC und des ILC auf der nichtkommutativen Skala $\Lnc$ zu bestimmen. Im phänomenologischen Teil der Arbeit wurde herausgefunden, dass Messungen am LHC für den Prozess pp-> Z gamma-> l+l- gamma nur in bestimmten Fällen auf nichtkommutative Effekte sensitiv sind. Für diese Fälle wurde für die nichtkommutative Energieskala Lambda_NC eine Grenze von Lambda_NC > 1.2 TeV bestimmt. Diese ist um eine Größenordnung höher als die Grenzen, die von bisherigen Beschleunigerexperimenten hergeleitet wurden. Bei einem zukünftigen Linearbeschleuniger, dem ILC, wird die Grenze auf Lambda_NC im Prozess e^+e^- -> Z gamma -> l^+ l^- gamma wesentlich erhöht (bis zu 6 TeV). Abgesehen davon ist dem ILC gerade der für den LHC kaum zugängliche Parameterbereich der nichtkommutativen Theorie erschlossen, was die Komplementarität der beiden Beschleunigerexperimente hinsichtlich der nichtkommutativen Parameter zeigt. Der zweite Teil der Arbeit entwickelte sich aus der Notwendigkeit heraus, den Gültigkeitsbereich der Theorie zu höheren Energien hin zu erweitern. Dafür haben wir den neutralen Sektor des nichtkommutativen SM um die nächste Ordnung in Theta ergänzt. Es stellte sich wider Erwarten heraus, dass die Theorie dabei um einige freie Parameter erweitert werden muss. Die zusätzlichen Parameter sind durch die homogenen Lösungen der Eichäquivalenzbedingungen gegeben, welche Ambiguit\"aten der Seiberg-Witten Abbildungen darstellen. Die allgemeine Erwartung war, dass die Ambiguitäten Feldredefinitionen entsprechen und daher in den Streumatrixelementen verschwinden m\"ussen. In dieser Arbeit wurde jedoch gezeigt, dass dies ab der zweiten Ordnung in Theta nicht der Fall ist und dass die Nichteindeutigkeit der Seiberg-Witten Abbildungen sich durchaus in Observablen niederschlägt. Die Vermutung besteht, dass jede neue Ordnung in Theta neue Parameter in die Theorie einführt. Wie weit und in welche Richtung die Theorie auf nichtkommutativer Raumzeit entwickelt werden muss, kann jedoch nur das Experiment entscheiden. / Despite its precise agreement with the experiment, the validity of the standard model (SM) of elementary particle physics is ensured only up to a scale of several hundred GeV so far. Even more, the inclusion of gravity into an unifying theory poses a problem which cannot be solved by ordinary quantum field theory (QFT). String theory, which is the most popular ansatz for a unified theory, predicts QFT on noncommutative space-time as a low energy limit. Nevertheless, independently of the motivation given by string theory, the nonlocality inherent to noncommutative QFT opens up the possibility for the inclusion of gravity. There are no theoretical predictions for the energy scale Lambda_NC at which noncommutative effects arise and it can be assumed to lie in the TeV range, which is the energy range probed by the next generation of colliders. Within this work we study the phenomenological consequences of a possible realization of QFT on noncommutative space-time relying on this assumption. The motivation for this thesis was given by the gap in the range of phenomenological studies of noncommutative effects in collider experiments, due to the absence in the literature of Large Hadron Collider (LHC) studies regarding noncommutative QFTs. In the first part we thus performed a phenomenological analysis of the hadronic process pp -> Z gamma -> l^+l^- gamma at the LHC and of electron-positron pair annihilation into a Z boson and a photon at the International Linear Collider (ILC). The noncommutative extension of the SM considered within this work relies on two building blocks: the Moyal-Weyl star-product of functions on ordinary space-time and the Seiberg-Witten maps. The latter relate the ordinary fields and parameters to their noncommutative counterparts such that ordinary gauge transformations induce noncommutative gauge transformations. This requirement is expressed by a set of inhomogeneous differential equations (the gauge equivalence equations) which are solved by the Seiberg-Witten maps order by order in the noncommutative parameter Theta. Thus, by means of the Moyal-Weyl star-product and the Seiberg-Witten maps a noncommutative extension of the SM as an effective theory as expansion in powers of Theta can be achieved, providing the framework of our phenomenological studies. A consequence of the noncommutativity of space-time is the violation of rotational invariance with respect to the beam axis. This effect shows up in the azimuthal dependence of cross sections, which is absent in the SM as well as in other models beyond the SM. Thus, the azimuthal dependence of the cross section is a typical signature of noncommutativity and can be used in order to discriminate it against other new physics effects. We have found this dependence to be best suited for deriving the sensitivity bounds on the noncommutative scale Lambda_NC. By studying pp -> Z gamma -> l^+l^- gamma to first order in the noncommutative parameter Theta, we show in the first part of this work that measurements at the LHC are sensitive to noncommutative effects only in certain cases, giving bounds on the noncommutative scale of Lambda_NC > 1.2 TeV. Our result improved the bounds present in the literature coming from past and present collider experiments by one order of magnitude. In order to explore the whole parameter range of the noncommutativity, ILC studies are required. By means of e^+e^- -> Z gamma -> l^+l^- gamma to first order in Theta we have shown that ILC measurements are complementary to LHC measurements of the noncommutative parameters. In addition, the bounds on Lambda_NC derived from the ILC are significantly higher and reach Lambda_NC > 6 TeV. The second part of this work arose from the necessity to enlarge the range of validity of our model towards higher energies. Thus, we expand the neutral current sector of the noncommutative SM to second order in $\theta$. We found that, against the general expectation, the theory must be enlarged by additional parameters. The new parameters enter the theory as ambiguities of the Seiberg-Witten maps. The latter are not uniquely determined and differ by homogeneous solutions of the gauge equivalence equations. The expectation was that the ambiguities correspond to field redefinitions and therefore should vanish in scattering matrix elements. However, we proved that this is not the case, and the ambiguities do affect physical observables. Our conjecture is, that every order in Theta will introduce new parameters to the theory. However, only the experiment can decide to what extent efforts with still higher orders in Theta are reasonable and will also give directions for the development of theoretical models of noncommutative QFTs.

Page generated in 0.064 seconds