• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 5
  • 4
  • 1
  • 1
  • Tagged with
  • 34
  • 34
  • 9
  • 9
  • 9
  • 9
  • 8
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Ansatz zur energetischen Klassifizierung spanender Werkzeugmaschinen

Paetzold, Jörg 16 October 2023 (has links)
Spanende Werkzeugmaschinen stellen einen zentralen Faktor in der Produktion technischer Güter dar. Sie haben einen erheblichen Anteil am industriellen Ener-gieverbrauch und fanden somit Aufnahme in die ErP-Richtlinie 2009/125/EG für energiegetriebene Produkte (Ökodesign-Richtlinie). Ähnlich Gebäuden, Konsum-gütern und Elektromotoren müssen Werkzeugmaschinen nachweislich energieef-fizienter werden. Obwohl die Energieeffizienz von Werkzeugmaschinen und de-ren Vergleichbarkeit seit langem Gegenstand wissenschaftlicher Untersuchungen ist, konnten noch keine geeigneten Methoden zur energetischen Klassifizierung gefunden werden, die ein Energielabel ermöglichen. Zentrale Herausforderun-gen liegen vor allem im Fehlen geeigneter Bezugsgrößen, der Fülle potenzieller Einflussgrößen und der Vielfalt der Anwendungsfälle. Deshalb werden zunächst etablierte Klassifizierungsmethoden anderer Produktgruppen auf deren Über-tragbarkeit analysiert. Der daraus abgeleitete modulare Lösungsansatz umfasst neben einer detaillierten Vorgehensweise die empirisch-statistischen Methoden zur Normierung signifikanter Einflussgrößen auf einen Kennwert. Am Beispiel eines prozessunabhängigen Energieeffizienzindikators wird die Klassifizie-rungsmethode angewendet und diskutiert. Der so klassifizierte Kennwert fließt als Modul in zwei Label-Entwürfe ein.:1 Einleitung und gesellschaftliche Einordnung 23 1.1 Motivation 23 1.2 Relevanz 25 1.3 Wirkungsbetrachtung 30 2 Zielsetzung und Aufbau der Arbeit 35 2.1 Zielsetzung 35 2.2 Aufbau der Arbeit 36 3 Analyse bestehender Ansätze und Rahmenbedingungen 39 3.1 Normen und rechtlicher Rahmen 39 3.2 Ausgeführte Energielabel 43 3.3 Methoden zum energetischen Vergleich spanender Werkzeugmaschinen 55 3.4 Energetische Kennwerte als mögliche Bezugsgröße 66 3.5 Kennwertermittlung 81 3.6 Zwischenfazit zu bestehenden Ansätzen und Rahmenbedingungen 90 4 Ansatz zur energetischen Klassifizierung 93 4.1 Methode zur energetischen Klassifizierung 93 4.2 Vorgehen zur Kennwertermittlung und Klassifizierung 96 4.3 Analyse von Einflussgrößen und Randbedingungen zur Kennwertbildung 96 4.4 Konzeption der Klassifizierungsmodule 118 4.5 Zwischenfazit zum entwickelten Ansatz zur energetischen Klassifizierung 121 5 Anwendung der Kennwertermittlung und Klassifizierung 123 5.1 Schritt 1: Maschinenklasse festlegen 123 5.2 Schritt 2: Bilanzgrenzen definieren 124 5.3 Schritt 3: Bezugsgröße bestimmen 124 5.4 Schritt 4: Potenzielle Einflussparameter auswählen 127 5.5 Schritt 5: Bezugsgröße und Einflussparameter messen bzw. erfassen 130 5.6 Schritt 6: Datensatz empirisch-statistisch analysieren 132 5.7 Schritt 7: Maschinen energetisch klassifizieren 141 5.8 Zwischenfazit zum ermittelten Kennwert für die prozessunabhängige Klassifizierung 145 6 Label-Entwurf 151 6.1 Auswahl der Beispielparameter 151 6.2 Label-Typ „Hexagon“ 153 6.3 Label-Typ „Piktogramm“ 154 6.4 Wirkung der Klassifizierungsmodule 155 7 Diskussion 157 7.1 Übertragbarkeit auf andere Maschinenklassen 157 7.2 Erfüllung der Anforderungen an ein Energielabel für Werkzeugmaschinen 157 8 Zusammenfassung 161 9 Ausblick 163 10 Literaturverzeichnis 165 A Anhang 189 A 1 Umwelt- und Verbrauchskennzeichnung nach ISO 14020 189 A 2 Ökodesign nach DIN 50598 191 A 3 Einflussgrößen und deren Auswirkungen auf die Schnittkraft 194 A 4 Liste der untersuchten Maschinen 196 A 5 Energetische Testwerkstücke und Messergebnisse 197 A 6 Scatterplott-Matrix aller Parameter 203 A 7 Begriffsdefinition für Anforderungen an ein Energielabel für Werkzeugmaschinen 204 A 8 Historische Entwicklung 205 / Cutting Machine tools are playing an important role in the production of technical goods. Their energy consumption is significant in the industrial sector and so they were included in the European directive 2009/125/EC for energy-related products (ecodesign requirements). As buildings, consumer goods, and electric engines, machine tools must become verifiable more efficient. As the energy efficiency of machine tools and their comparison are research topics since a long time, no suitable methods for classification were found to facilitate an energy label. Cen-tral challenges are the lack of appropriated reference values as well as the large amount of impact values and use cases. Therefore, this work initially analyses established classification methods of other product groups and their applicability. The derived modular approach consists of a detailed procedure as well as statisti-cal methods for the normalization of significant impact parameters to one charac-teristic value. The classification method is applied and discussed exemplarily to a process-independent energy efficiency indicator. This classified value becomes one module in two drafts for an energy label.:1 Einleitung und gesellschaftliche Einordnung 23 1.1 Motivation 23 1.2 Relevanz 25 1.3 Wirkungsbetrachtung 30 2 Zielsetzung und Aufbau der Arbeit 35 2.1 Zielsetzung 35 2.2 Aufbau der Arbeit 36 3 Analyse bestehender Ansätze und Rahmenbedingungen 39 3.1 Normen und rechtlicher Rahmen 39 3.2 Ausgeführte Energielabel 43 3.3 Methoden zum energetischen Vergleich spanender Werkzeugmaschinen 55 3.4 Energetische Kennwerte als mögliche Bezugsgröße 66 3.5 Kennwertermittlung 81 3.6 Zwischenfazit zu bestehenden Ansätzen und Rahmenbedingungen 90 4 Ansatz zur energetischen Klassifizierung 93 4.1 Methode zur energetischen Klassifizierung 93 4.2 Vorgehen zur Kennwertermittlung und Klassifizierung 96 4.3 Analyse von Einflussgrößen und Randbedingungen zur Kennwertbildung 96 4.4 Konzeption der Klassifizierungsmodule 118 4.5 Zwischenfazit zum entwickelten Ansatz zur energetischen Klassifizierung 121 5 Anwendung der Kennwertermittlung und Klassifizierung 123 5.1 Schritt 1: Maschinenklasse festlegen 123 5.2 Schritt 2: Bilanzgrenzen definieren 124 5.3 Schritt 3: Bezugsgröße bestimmen 124 5.4 Schritt 4: Potenzielle Einflussparameter auswählen 127 5.5 Schritt 5: Bezugsgröße und Einflussparameter messen bzw. erfassen 130 5.6 Schritt 6: Datensatz empirisch-statistisch analysieren 132 5.7 Schritt 7: Maschinen energetisch klassifizieren 141 5.8 Zwischenfazit zum ermittelten Kennwert für die prozessunabhängige Klassifizierung 145 6 Label-Entwurf 151 6.1 Auswahl der Beispielparameter 151 6.2 Label-Typ „Hexagon“ 153 6.3 Label-Typ „Piktogramm“ 154 6.4 Wirkung der Klassifizierungsmodule 155 7 Diskussion 157 7.1 Übertragbarkeit auf andere Maschinenklassen 157 7.2 Erfüllung der Anforderungen an ein Energielabel für Werkzeugmaschinen 157 8 Zusammenfassung 161 9 Ausblick 163 10 Literaturverzeichnis 165 A Anhang 189 A 1 Umwelt- und Verbrauchskennzeichnung nach ISO 14020 189 A 2 Ökodesign nach DIN 50598 191 A 3 Einflussgrößen und deren Auswirkungen auf die Schnittkraft 194 A 4 Liste der untersuchten Maschinen 196 A 5 Energetische Testwerkstücke und Messergebnisse 197 A 6 Scatterplott-Matrix aller Parameter 203 A 7 Begriffsdefinition für Anforderungen an ein Energielabel für Werkzeugmaschinen 204 A 8 Historische Entwicklung 205
32

Ansatz zur energetischen Klassifizierung spanender Werkzeugmaschinen

Paetzold, Jörg 16 October 2023 (has links)
Spanende Werkzeugmaschinen stellen einen zentralen Faktor in der Produktion technischer Güter dar. Sie haben einen erheblichen Anteil am industriellen Ener-gieverbrauch und fanden somit Aufnahme in die ErP-Richtlinie 2009/125/EG für energiegetriebene Produkte (Ökodesign-Richtlinie). Ähnlich Gebäuden, Konsum-gütern und Elektromotoren müssen Werkzeugmaschinen nachweislich energieef-fizienter werden. Obwohl die Energieeffizienz von Werkzeugmaschinen und de-ren Vergleichbarkeit seit langem Gegenstand wissenschaftlicher Untersuchungen ist, konnten noch keine geeigneten Methoden zur energetischen Klassifizierung gefunden werden, die ein Energielabel ermöglichen. Zentrale Herausforderun-gen liegen vor allem im Fehlen geeigneter Bezugsgrößen, der Fülle potenzieller Einflussgrößen und der Vielfalt der Anwendungsfälle. Deshalb werden zunächst etablierte Klassifizierungsmethoden anderer Produktgruppen auf deren Über-tragbarkeit analysiert. Der daraus abgeleitete modulare Lösungsansatz umfasst neben einer detaillierten Vorgehensweise die empirisch-statistischen Methoden zur Normierung signifikanter Einflussgrößen auf einen Kennwert. Am Beispiel eines prozessunabhängigen Energieeffizienzindikators wird die Klassifizie-rungsmethode angewendet und diskutiert. Der so klassifizierte Kennwert fließt als Modul in zwei Label-Entwürfe ein.:1 Einleitung und gesellschaftliche Einordnung 23 1.1 Motivation 23 1.2 Relevanz 25 1.3 Wirkungsbetrachtung 30 2 Zielsetzung und Aufbau der Arbeit 35 2.1 Zielsetzung 35 2.2 Aufbau der Arbeit 36 3 Analyse bestehender Ansätze und Rahmenbedingungen 39 3.1 Normen und rechtlicher Rahmen 39 3.2 Ausgeführte Energielabel 43 3.3 Methoden zum energetischen Vergleich spanender Werkzeugmaschinen 55 3.4 Energetische Kennwerte als mögliche Bezugsgröße 66 3.5 Kennwertermittlung 81 3.6 Zwischenfazit zu bestehenden Ansätzen und Rahmenbedingungen 90 4 Ansatz zur energetischen Klassifizierung 93 4.1 Methode zur energetischen Klassifizierung 93 4.2 Vorgehen zur Kennwertermittlung und Klassifizierung 96 4.3 Analyse von Einflussgrößen und Randbedingungen zur Kennwertbildung 96 4.4 Konzeption der Klassifizierungsmodule 118 4.5 Zwischenfazit zum entwickelten Ansatz zur energetischen Klassifizierung 121 5 Anwendung der Kennwertermittlung und Klassifizierung 123 5.1 Schritt 1: Maschinenklasse festlegen 123 5.2 Schritt 2: Bilanzgrenzen definieren 124 5.3 Schritt 3: Bezugsgröße bestimmen 124 5.4 Schritt 4: Potenzielle Einflussparameter auswählen 127 5.5 Schritt 5: Bezugsgröße und Einflussparameter messen bzw. erfassen 130 5.6 Schritt 6: Datensatz empirisch-statistisch analysieren 132 5.7 Schritt 7: Maschinen energetisch klassifizieren 141 5.8 Zwischenfazit zum ermittelten Kennwert für die prozessunabhängige Klassifizierung 145 6 Label-Entwurf 151 6.1 Auswahl der Beispielparameter 151 6.2 Label-Typ „Hexagon“ 153 6.3 Label-Typ „Piktogramm“ 154 6.4 Wirkung der Klassifizierungsmodule 155 7 Diskussion 157 7.1 Übertragbarkeit auf andere Maschinenklassen 157 7.2 Erfüllung der Anforderungen an ein Energielabel für Werkzeugmaschinen 157 8 Zusammenfassung 161 9 Ausblick 163 10 Literaturverzeichnis 165 A Anhang 189 A 1 Umwelt- und Verbrauchskennzeichnung nach ISO 14020 189 A 2 Ökodesign nach DIN 50598 191 A 3 Einflussgrößen und deren Auswirkungen auf die Schnittkraft 194 A 4 Liste der untersuchten Maschinen 196 A 5 Energetische Testwerkstücke und Messergebnisse 197 A 6 Scatterplott-Matrix aller Parameter 203 A 7 Begriffsdefinition für Anforderungen an ein Energielabel für Werkzeugmaschinen 204 A 8 Historische Entwicklung 205 / Cutting Machine tools are playing an important role in the production of technical goods. Their energy consumption is significant in the industrial sector and so they were included in the European directive 2009/125/EC for energy-related products (ecodesign requirements). As buildings, consumer goods, and electric engines, machine tools must become verifiable more efficient. As the energy efficiency of machine tools and their comparison are research topics since a long time, no suitable methods for classification were found to facilitate an energy label. Cen-tral challenges are the lack of appropriated reference values as well as the large amount of impact values and use cases. Therefore, this work initially analyses established classification methods of other product groups and their applicability. The derived modular approach consists of a detailed procedure as well as statisti-cal methods for the normalization of significant impact parameters to one charac-teristic value. The classification method is applied and discussed exemplarily to a process-independent energy efficiency indicator. This classified value becomes one module in two drafts for an energy label.:1 Einleitung und gesellschaftliche Einordnung 23 1.1 Motivation 23 1.2 Relevanz 25 1.3 Wirkungsbetrachtung 30 2 Zielsetzung und Aufbau der Arbeit 35 2.1 Zielsetzung 35 2.2 Aufbau der Arbeit 36 3 Analyse bestehender Ansätze und Rahmenbedingungen 39 3.1 Normen und rechtlicher Rahmen 39 3.2 Ausgeführte Energielabel 43 3.3 Methoden zum energetischen Vergleich spanender Werkzeugmaschinen 55 3.4 Energetische Kennwerte als mögliche Bezugsgröße 66 3.5 Kennwertermittlung 81 3.6 Zwischenfazit zu bestehenden Ansätzen und Rahmenbedingungen 90 4 Ansatz zur energetischen Klassifizierung 93 4.1 Methode zur energetischen Klassifizierung 93 4.2 Vorgehen zur Kennwertermittlung und Klassifizierung 96 4.3 Analyse von Einflussgrößen und Randbedingungen zur Kennwertbildung 96 4.4 Konzeption der Klassifizierungsmodule 118 4.5 Zwischenfazit zum entwickelten Ansatz zur energetischen Klassifizierung 121 5 Anwendung der Kennwertermittlung und Klassifizierung 123 5.1 Schritt 1: Maschinenklasse festlegen 123 5.2 Schritt 2: Bilanzgrenzen definieren 124 5.3 Schritt 3: Bezugsgröße bestimmen 124 5.4 Schritt 4: Potenzielle Einflussparameter auswählen 127 5.5 Schritt 5: Bezugsgröße und Einflussparameter messen bzw. erfassen 130 5.6 Schritt 6: Datensatz empirisch-statistisch analysieren 132 5.7 Schritt 7: Maschinen energetisch klassifizieren 141 5.8 Zwischenfazit zum ermittelten Kennwert für die prozessunabhängige Klassifizierung 145 6 Label-Entwurf 151 6.1 Auswahl der Beispielparameter 151 6.2 Label-Typ „Hexagon“ 153 6.3 Label-Typ „Piktogramm“ 154 6.4 Wirkung der Klassifizierungsmodule 155 7 Diskussion 157 7.1 Übertragbarkeit auf andere Maschinenklassen 157 7.2 Erfüllung der Anforderungen an ein Energielabel für Werkzeugmaschinen 157 8 Zusammenfassung 161 9 Ausblick 163 10 Literaturverzeichnis 165 A Anhang 189 A 1 Umwelt- und Verbrauchskennzeichnung nach ISO 14020 189 A 2 Ökodesign nach DIN 50598 191 A 3 Einflussgrößen und deren Auswirkungen auf die Schnittkraft 194 A 4 Liste der untersuchten Maschinen 196 A 5 Energetische Testwerkstücke und Messergebnisse 197 A 6 Scatterplott-Matrix aller Parameter 203 A 7 Begriffsdefinition für Anforderungen an ein Energielabel für Werkzeugmaschinen 204 A 8 Historische Entwicklung 205
33

The analysis of primary metered half-hourly electricity and gas consumption in municipal buildings

Ferreira, Vasco Guedes January 2009 (has links)
This thesis addressed the need for improved analysis and interpretation of primary meter half-hourly energy consumption data. The current work offers a novel benchmarking technique that was tested for 6 types of municipal buildings. This approach is different from conventional annual benchmarking mainly because it uses electricity and gas data in half-hourly periods, together with outside temperature data. A survey to European local authorities’ metering and monitoring practices was conducted in order to assess municipal energy managers' current procedures and needs in terms of data analysis to assess building energy performance and to identify potential energy saving opportunities. The benchmarking approach was developed considering the energy managers’ needs, but also the state-of the art in terms of building energy monitoring techniques, particularly building energy signatures, and the analysis techniques used on electricity grid demand forecasting. The benchmarking approach is based on the use of a metric composed of several indicators that are related to the load demand shape profile and the building energy signature. The comparison of indicators for buildings of the same type using standard scores identifies uncommon load demand profile characteristics and/or gas dependency on outside temperature in specific buildings. The metric is able to support the identification of potential energy wastage, which is linked to the detection of opportunities to save energy. The benchmarking technique was tested in 81 municipal building owned by Leicester City Council. This methodology can be applied to any non-domestic building equipped with primary meters for registering half-hourly electricity and gas consumption. In theory, this approach can also be applied to residential buildings, and to other short time series data types, for example quarter-hourly or 10 minutes interval data. The main contribution of this thesis is to improve the objectivity of building primary meter half-hourly electricity and gas consumption data analysis and interpretation by using quantitative parameters, instead of subjective visualisation techniques. The interpretation of building consumption data in short time series periods can now be streamlined, automated and perhaps incorporated in existing energy analysis software. This thesis raises questions that can lead to future research projects aiming to improve the metric and also to enlarge the scope of its application to national and European scale, to other building types and to other utilities.
34

Parameter Study of Geometrically Induced Flow Maldistribution in Shell and Tube Heat Exchangers

Schab, Richard, Dorau, Tim, Unz, Simon, Beckmann, Michael 30 March 2023 (has links)
Shell and tube heat exchangers (STHEs) are the most common type of heat exchanger in preheat trains (PHT) of oil refineries and in chemical process plants. Most commercial design software tools for STHE assume uniform distribution over all tubes of a tube bundle. This leads to various challenges in the operation of the affected devices. Flow maldistribution reduces heat duty of STHE in many applications and supports fouling buildup in fluids that tend to particle, bio, and crystallization fouling (Verein Deutscher Ingenieure, ed., 2010, Heat Atlas, 2nd ed., VDI-Buch., Springer-Verlag). In this article, a fluid mechanics study about tube side flow distribution of crude oil and related hydrocarbons in two-pass PHT heat exchangers is described. It is shown that the amount of flow maldistribution varies significantly between the different STHE designs. Therefore, a parameter study was conducted to investigate reasons for maldistribution. For instance, the nozzles diameter, type, and orientation were identified as crucial parameters. In consequence, simple design suggestions for reducing tube side flow maldistribution are proposed.

Page generated in 0.0659 seconds