Spelling suggestions: "subject:"eigenvalues"" "subject:"igenvalues""
101 |
Bornes sur des valeurs propres et métriques extrémales / Eigenvalue bounds and extremal metricsPetrides, Romain 17 November 2015 (has links)
Cette thèse est consacrée à l'étude des valeurs propres de l'opérateur de Laplace et de l'opérateur de Steklov sur des variétés riemanniennes. On cherche à donner des bornes optimales parmi l'ensemble des métriques, dans une classe conforme donnée ou non, et à caractériser, si elles existent, les métriques qui atteignent ces bornes. Ces métriques extrémales ont des propriétés qui s'inscrivent dans la théorie des surfaces minimales. On s'intéresse d'abord à la borne supérieure des valeurs propres de Laplace parmi des métriques conformes entre elles, appelées valeurs propres conformes. Dans le chapitre 1, on estime la deuxième valeur propre conforme de la sphère standard. Dans les chapitres 2 et 3, on montre que la première valeur propre conforme d'une variété riemannienne est plus grande que celle de la sphère standard de même dimension avec égalité seulement pour la sphère standard. Ensuite, on cherche à démontrer l'existence et la régularité de métriques qui maximisent les valeurs propres sur des surfaces, dans une classe conforme donnée ou non. Dans les chapitres 3 et 4, on démontre un résultat d'existence pour les valeurs propres de Laplace. Dans le chapitre 6, le travail est fait pour les valeurs propres de Steklov. Enfin, dans le chapitre 5, fruit d'un travail réalisé en collaboration avec Paul Laurain, on démontre un résultat de régularité et de quantification des applications harmoniques à bord libre sur une surface Riemannienne. C'est un élément clé pour le chapitre 6 / This thesis is devoted to the study of the Laplace eigenvalues and the Steklov eigenvalues on Riemannian manifolds. We look for optimal bounds among the set of metrics, lying in a conformal class or not. We also characterize, if they exist the metrics which reach these bounds. These extremal metrics have properties from the theory of minimal surfaces. First, we are interested in the upper bound of Laplace eigenvalues in a class of conformal metrics, called the conformal eigenvalues. In Chapter 1, we estimate the second conformal eigenvalue of the standard sphere. In Chapters 2 and 3, we prove that the first conformal eigenvalue of a Riemannian manifold is greater than the one of the standard sphere of same dimension, with equality only for the standard sphere. Then, we look for existence and regularity results for metrics which maximize eigenvalues on surfaces, in a given conformal class or not. In Chapters 3 and 4, we prove an existence result for Laplace eigenvalues. In Chapter 6, the work is done for Steklov eigenvalues. Finally, in Chapter 5, obtained in collaboration with Paul Laurain, we prove a regularity and quantification result for harmonic maps with free boundary on a Riemannian surface. It is a key component for Chapter 6
|
102 |
Computational and analytical methods for the simulation of electronic states and transport in semiconductor systemsBarrett, Junior Augustus January 2014 (has links)
The work in this thesis is focussed on obtaining fast, e cient solutions to the Schroedinger-Poisson model of electron states in microelectronic devices. The self-consistent solution of the coupled system of Schroedinger-Poisson equations poses many challenges. In particular, the three-dimensional solution is computationally intensive resulting in long simulation time, prohibitive memory requirements and considerable computer resources such as parallel processing and multi-core machines. Consequently, an approximate analytical solution for the coupled system of Schroedinger-Poisson equations is investigated. Details of the analytical techniques for the approximate solution are developed and the original approach is outlined. By introducing the hyperbolic secant and tangent functions with complex arguments, the coupled system of equations is transformed into one for which an approximate solution is much simpler to obtain. The method solves Schroedinger's equation rst by approximating the electrostatic potential in Poisson's equation and subsequently uses this solution to solve Poisson's equation. The complete iterative solution for the coupled system is obtained through implementation into Matlab. The semi-analytical method is robust and is applicable to one, two and three dimensional device architectures. It has been validated against alternative methods and experimental results reported in the literature and it shows improved simulation times for the class of coupled partial di erential equations and devices for which it was developed.
|
103 |
Renormalization of wave function fluctuations for a generalized Harper equationHulton, Sarah January 2006 (has links)
A renormalization analysis is presented for a generalized Harper equation (1 + α cos(2π(ω(i + 1/2) + φ)))ψi+1 + (1 + α cos(2π(ω(i − 1/2) + φ)))ψi−1 +2λ cos(2π(iω + φ))ψi = Eψi. (0.1) For values of the parameter ω having periodic continued-fraction expansion, we construct the periodic orbits of the renormalization strange sets in function space that govern the wave function fluctuations of the solutions of the generalized Harper equation in the strong-coupling limit λ→∞. For values of ω with non-periodic continued fraction expansions, we make some conjectures based on work of Mestel and Osbaldestin on the likely structure of the renormalization strange set.
|
104 |
Estimates for eigenvalues of the laplace operators.January 2000 (has links)
by He Zhaokui. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2000. / Includes bibliographical references (leaves 81-82). / Abstracts in English and Chinese. / Chapter 1 --- Introduction --- p.5 / Chapter 2 --- Preliminaries --- p.8 / Chapter 2.1 --- The Laplacian of a compact manifold --- p.8 / Chapter 2.2 --- The Laplacian of a graph --- p.9 / Chapter 2.3 --- Some basic facts about the eigenvalues of a graph --- p.13 / Chapter 3 --- Bound of the first non-zero eigenvalue in terms of Cheeger constant --- p.18 / Chapter 3.1 --- The Cheeger constant --- p.18 / Chapter 3.2 --- The Cheeger inequality of a compact manifold --- p.19 / Chapter 3.3 --- The Cheeger inequality of a graph --- p.23 / Chapter 4 --- Diameters and eigenvalues --- p.27 / Chapter 4.1 --- Some facts --- p.27 / Chapter 4.2 --- Estimate the eigenvalues of graphs --- p.29 / Chapter 4.3 --- The heat kernel of compact manifolds --- p.34 / Chapter 4.4 --- Estimate the eigenvalues of manifolds --- p.35 / Chapter 5 --- Harnack inequality and eigenvalues on homogeneous graphs --- p.40 / Chapter 5.1 --- Preliminaries --- p.40 / Chapter 5.2 --- The Neumann eigenvalue of a subgraph --- p.41 / Chapter 5.3 --- The Harnack inequality --- p.44 / Chapter 5.4 --- A lower bound of the first non-zero eigenvalue --- p.52 / Chapter 6 --- Harnack inequality and eigenvalues on compact man- ifolds --- p.54 / Chapter 6.1 --- Gradient estimate --- p.54 / Chapter 6.2 --- Lower bounds for the first non-zero eigenvalue --- p.59 / Chapter 7 --- Heat kernel and eigenvalues of graphs --- p.63 / Chapter 7.1 --- The heat kernel of a graph --- p.54 / Chapter 7.2 --- Lower bounds for eigenvalues --- p.70 / Chapter 8 --- Estimate the eigenvalues of a compact manifold --- p.73 / Chapter 8.1 --- An isoperimetric constant --- p.75 / Chapter 8.2 --- A lower estimate for the (m + l)-st eigenvalue --- p.77
|
105 |
Numerical solution of linear and nonlinear eigenvalue problemsAkinola, Richard O. January 2010 (has links)
Given a real parameter-dependent matrix, we obtain an algorithm for computing the value of the parameter and corresponding eigenvalue for which two eigenvalues of the matrix coalesce to form a 2-dimensional Jordan block. Our algorithms are based on extended versions of the implicit determinant method of Spence and Poulton [55]. We consider when the eigenvalue is both real and complex, which results in solving systems of nonlinear equations by Newton’s or the Gauss-Newton method. Our algorithms rely on good initial guesses, but if these are available, we obtain quadratic convergence. Next, we describe two quadratically convergent algorithms for computing a nearby defective matrix which are cheaper than already known ones. The first approach extends the implicit determinant method in [55] to find parameter values for which a certain Hermitian matrix is singular subject to a constraint. This results in using Newton’s method to solve a real system of three nonlinear equations. The second approach involves simply writing down all the nonlinear equations and solving a real over-determined system using the Gauss-Newton method. We only consider the case where the nearest defective matrix is real. Finally, we consider the computation of an algebraically simple complex eigenpair of a nonsymmetric matrix where the eigenvector is normalised using the natural 2-norm, which produces only a single real normalising equation. We obtain an under-determined system of nonlinear equations which is solved by the Gauss-Newton method. We show how to obtain an equivalent square linear system of equations for the computation of the desired eigenpairs. This square system is exactly what would have been obtained if we had ignored the non uniqueness and nondifferentiability of the normalisation.
|
106 |
Homogenization of an elastic-plastic problem.Onofrei, Daniel T 30 April 2003 (has links)
This project presents the homogenization analysis for a static contact problem with slip dependent friction between an elastic body and a rigid foundation. The homogenization for the static eigenvalue problem associated to this model is studied. We prove that the eigenvalues are of order epsilon. We obtain the limit problem for the contact model. The analysis is carried out by using the Gamma-convergence theory.
|
107 |
Asymptotic unbounded root loci : formulae and computationJanuary 1981 (has links)
S.S. Sastry and C.A. Desoer. / Bibliography: leaf 3. / Caption title. "August, 1981." / Supported by NSF under Grant ENG-78-09032-A01 NASA Grant NGL-22-009-124
|
108 |
A study of the generalized eigenvalue decomposition in discriminant analysisZhu, Manli, January 2006 (has links)
Thesis (Ph. D.)--Ohio State University, 2006. / Title from first page of PDF file. Includes bibliographical references (p. 118-123).
|
109 |
Optimal Inference for One-Sample and Multisample Principal Component AnalysisVerdebout, Thomas 24 October 2008 (has links)
Parmi les outils les plus classiques de l'Analyse Multivariée, les Composantes Principales sont aussi un des plus anciens puisqu'elles furent introduites il y a plus d'un siècle par Pearson (1901) et redécouvertes ensuite par Hotelling (1933). Aujourd'hui, cette méthode est abondamment utilisée en Sciences Sociales, en Economie, en Biologie et en Géographie pour ne citer que quelques disciplines. Elle a pour but de réduire de façon optimale (dans un certain sens) le nombre de variables contenues dans un jeu de données.
A ce jour, les méthodes d'inférence utilisées en Analyse en Composantes Principales par les praticiens sont généralement fondées sur l'hypothèse de normalité des observations. Hypothèse qui peut, dans bien des situations, être remise en question.
Le but de ce travail est de construire des procédures de test pour l'Analyse en Composantes Principales qui soient valides sous une famille plus importante de lois de probabilité, la famille des lois elliptiques. Pour ce faire, nous utilisons la méthodologie de Le Cam combinée au principe d'invariance. Ce dernier stipule que si une hypothèse nulle reste invariante sous l'action d'un groupe de transformations, alors, il faut se restreindre à des statistiques de test également invariantes sous l'action de ce groupe. Toutes les hypothèses nulles associées aux problèmes considérés dans ce travail sont invariantes sous l'action d'un groupe de transformations appellées monotones radiales. L'invariant maximal associé à ce groupe est le vecteur des signes multivariés et des rangs des distances de Mahalanobis entre les observations et l'origine.
Les paramètres d'intérêt en Analyse en composantes Principales sont les vecteurs propres et valeurs propres de matrices définies positives. Ce qui implique que l'espace des paramètres n'est pas linéaire. Nous développons donc une manière d'obtenir des procédures optimales pour des suite d'experiences locales courbées.
Les statistiques de test introduites sont optimales au sens de Le Cam et mesurables en l'invariant maximal décrit ci-dessus.
Les procédures de test basées sur ces statistiques possèdent de nombreuses propriétés attractives: elles sont valides sous la famille des lois elliptiques, elles sont efficaces sous une densité spécifiée et possèdent de très bonnes efficacités asymptotiques relatives par rapport à leurs concurrentes. En particulier, lorsqu'elles sont basées sur des scores Gaussiens, elles sont aussi efficaces que les procédures Gaussiennes habituelles et sont bien plus efficaces que ces dernières si l'hypothèse de normalité des observations n'est pas remplie.
|
110 |
Estimation of fiber size distribution in 3D X-ray µCT image datasetsMozaffari, Alireza, Varaiya, Kunal January 2010 (has links)
The project is a thesis work in master program of Intelligent Systems that’s done by Alireza Mozaffari and Kunal Varaiya with supervising of Dr Kenneth Nilsson and Dr Cristofer Englund. In this project we are estimating the depth distribution of different sizes of fibers in a press felt sample. Press felt is a product that is being used in paper industry. In order to evaluate the production process when press felts are made, it is necessary to be able to estimate the fiber sizes in product. For this goal, we developed a program in Matlab to process X-ray images of a press felt, scanned by micro-CT scanner that is able to find the fibers of two different known sizes of fibers and estimates the depth distribution of the different fibers. / The project is done in Matlab which is estimating the distribution of different sizes of fibers in press felt.
|
Page generated in 0.0307 seconds