Spelling suggestions: "subject:"theeigenvectors"" "subject:"andeigenvectors""
1 |
Spectral properties of combinatorial classes of matricesKim, In-Jae. January 2005 (has links)
Thesis (Ph. D.)--University of Wyoming, 2005. / Title from PDF title page (viewed on Feb. 22, 2008). Includes bibliographical references (p. 136-139).
|
2 |
Students' transfer of learning of eigenvalues and eigenvectors : implementation of actor-oriented transfer framework /Karakök, Gülden. January 1900 (has links)
Thesis (Ph. D.)--Oregon State University, 2009. / Printout. Includes bibliographical references (leaves 298-303). Also available on the World Wide Web.
|
3 |
Methods for solving large symmetric eigenvalue problems associated with configuration interaction electronic structure calulations /Maschhoff, Kristyn Joy, January 1994 (has links)
Thesis (Ph. D.)--University of Washington, 1994. / Vita. Includes bibliographical references (leaves [139]-141).
|
4 |
Largest Eigenvalues of Degree SequencesBiyikoglu, Türker, Leydold, Josef January 2006 (has links) (PDF)
We show that amongst all trees with a given degree sequence it is a ball where the vertex degrees decrease with increasing distance from its center that maximizes the spectral radius of the graph (i.e., its adjacency matrix). The resulting Perron vector is decreasing on every path starting from the center of this ball. This result it also connected to Faber-Krahn like theorems for Dirichlet matrices on trees. The above result is extended to connected graphs with given degree sequence. Here we give a necessary condition for a graph that has greatest maximum eigenvalue. Moreover, we show that the greatest maximum eigenvalue is monotone on degree sequences with respect to majorization. (author's abstract). Note: There is a more recent version of this paper available: "Graphs with Given Degree Sequence and Maximal Spectral Radius", Research Report Series / Department of Statistics and Mathematics, no. 72. / Series: Research Report Series / Department of Statistics and Mathematics
|
5 |
Μαθηματικές μέθοδοι βελτιστοποίησης προβλημάτων μεγάλης κλίμακας / Mathematical methods of optimization for large scale problemsΑποστολοπούλου, Μαριάννα 21 December 2012 (has links)
Στην παρούσα διατριβή μελετάμε το πρόβλημα της βελτιστοποίησης μη γραμμικών συναρτήσεων πολλών μεταβλητών, όπου η αντικειμενική συνάρτηση είναι συνεχώς διαφορίσιμη σε ένα ανοιχτό υποσύνολο του Rn. Αναπτύσσουμε μαθηματικές μεθόδους βελτιστοποίησης αποσκοπώντας στην επίλυση προβλημάτων μεγάλης κλίμακας, δηλαδή προβλημάτων των οποίων οι μεταβλητές είναι πολλές χιλιάδες, ακόμα και εκατομμύρια. Η βασική ιδέα των μεθόδων που αναπτύσσουμε έγκειται στη θεωρητική μελέτη των χαρακτηριστικών μεγεθών των Quasi-Newton ενημερώσεων ελάχιστης και μικρής μνήμης. Διατυπώνουμε θεωρήματα αναφορικά με το χαρακτηριστικό πολυώνυμο, τον αριθμό των διακριτών ιδιοτιμών και των αντίστοιχων ιδιοδιανυσμάτων. Εξάγουμε κλειστούς τύπους για τον υπολογισμό των ανωτέρω ποσοτήτων, αποφεύγοντας τόσο την αποθήκευση όσο και την παραγοντοποίηση πινάκων. Τα νέα θεωρητικά απoτελέσματα εφαρμόζονται αφενός μεν στην επίλυση μεγάλης κλίμακας υποπροβλημάτων περιοχής εμπιστοσύνης, χρησιμοποιώντας τη μέθοδο της σχεδόν ακριβούς λύσης, αφετέρου δε, στην καμπυλόγραμμη αναζήτηση, η οποία χρησιμοποιεί ένα ζεύγος κατευθύνσεων μείωσης, την Quasi-Newton κατεύθυνση και την κατεύθυνση αρνητικής καμπυλότητας. Η νέα μέθοδος μειώνει δραστικά τη χωρική πολυπλοκότητα των γνωστών αλγορίθμων του μη γραμμικού προγραμματισμού, διατηρώντας παράλληλα τις καλές ιδιότητες σύγκλισής τους. Ως αποτέλεσμα, οι προκύπτοντες νέοι αλγόριθμοι έχουν χωρική πολυπλοκότητα Θ(n). Τα αριθμητικά αποτελέσματα δείχνουν ότι οι νέοι αλγόριθμοι είναι αποδοτικοί, γρήγοροι και πολύ αποτελεσματικοί όταν χρησιμοποιούνται στην επίλυση προβλημάτων με πολλές μεταβλητές. / In this thesis we study the problem of minimizing nonlinear functions of several variables, where the objective function is continuously differentiable on an open subset of Rn. We develop mathematical optimization methods for solving large scale problems, i.e., problems whose variables are many thousands, even millions. The proposed method is based on the theoretical study of the properties of minimal and low memory Quasi-Newton updates. We establish theorems concerning the characteristic polynomial, the number of distinct eigenvalues and corresponding eigenvectors. We derive closed formulas for calculating these quantities, avoiding both the storage and factorization of matrices. The new theoretical results are applied in the large scale trust region subproblem for calculating nearly exact solutions as well as in a curvilinear search that uses a Quasi-Newton and a negative curvature direction. The new method is drastically reducing the spatial complexity of known algorithms of nonlinear programming. As a result, the new algorithms have spatial complexity Θ(n), while they are maintaining good convergence properties. The numerical results show that the proposed algorithms are efficient, fast and very effective when used in solving large scale problems.
|
Page generated in 0.0734 seconds