Spelling suggestions: "subject:"large scale optimization"" "subject:"marge scale optimization""
1 |
Higher-order methods for large-scale optimizationFountoulakis, Kimon January 2015 (has links)
There has been an increased interest in optimization for the analysis of large-scale data sets which require gigabytes or terabytes of data to be stored. A variety of applications originate from the fields of signal processing, machine learning and statistics. Seven representative applications are described below. - Magnetic Resonance Imaging (MRI): A medical imaging tool used to scan the anatomy and the physiology of a body. - Image inpainting: A technique for reconstructing degraded parts of an image. - Image deblurring: Image processing tool for removing the blurriness of a photo caused by natural phenomena, such as motion. - Radar pulse reconstruction. - Genome-Wide Association study (GWA): DNA comparison between two groups of people (with/without a disease) in order to investigate factors that a disease depends on. - Recommendation systems: Classification of data (i.e., music or video) based on user preferences. - Data fitting: Sampled data are used to simulate the behaviour of observed quantities. For example estimation of global temperature based on historic data. Large-scale problems impose restrictions on methods that have been so far employed. The new methods have to be memory efficient and ideally, within seconds they should offer noticeable progress towards a solution. First-order methods meet some of these requirements. They avoid matrix factorizations, they have low memory requirements, additionally, they sometimes offer fast progress in the initial stages of optimization. Unfortunately, as demonstrated by numerical experiments in this thesis, first-order methods miss essential information about the conditioning of the problems, which might result in slow practical convergence. The main advantage of first-order methods which is to rely only on simple gradient or coordinate updates becomes their essential weakness. We do not think this inherent weakness of first-order methods can be remedied. For this reason, the present thesis aims at the development and implementation of inexpensive higher-order methods for large-scale problems.
|
2 |
Simulated Annealing : Simulated Annealing for Large Scale Optimization in Wireless Communications / : Simulated Annealing using Matlab SoftwareSakhavat, Tamim, Grissa, Haithem, Abdalrahman, Ziyad January 2012 (has links)
In this thesis a simulated annealing algorithm is employed as an optimization tool for a large scale optimization problem in wireless communication. In this application, we have 100 places for transition antennas and 100 places for receivers, and also a channel between each position in both areas. Our aim is to nd, say the best 3 positions there, in a way that the channel capacity is maximized. The number of possible combinations is huge. Hence, nding the best channel will take a very long time using an exhaustive search. To solve this problem, we use a simulated annealing algorithm and estimate the best answer. The simulated annealing algorithm chooses a random element, and then from the local search algorithm, compares the selected element with its neighbourhood. If the selected element is the maximum among its neighbours, it is a local maximum. The strength of the simulated annealing algorithm is its ability to escape from local maximum by using a random mechanism that mimics the Boltzmann statistic.
|
3 |
Integrating local information for inference and optimization in machine learningZhu, Zhanxing January 2016 (has links)
In practice, machine learners often care about two key issues: one is how to obtain a more accurate answer with limited data, and the other is how to handle large-scale data (often referred to as “Big Data” in industry) for efficient inference and optimization. One solution to the first issue might be aggregating learned predictions from diverse local models. For the second issue, integrating the information from subsets of the large-scale data is a proven way of achieving computation reduction. In this thesis, we have developed some novel frameworks and schemes to handle several scenarios in each of the two salient issues. For aggregating diverse models – in particular, aggregating probabilistic predictions from different models – we introduce a spectrum of compositional methods, Rényi divergence aggregators, which are maximum entropy distributions subject to biases from individual models, with the Rényi divergence parameter dependent on the bias. Experiments are implemented on various simulated and real-world datasets to verify the findings. We also show the theoretical connections between Rényi divergence aggregators and machine learning markets with isoelastic utilities. The second issue involves inference and optimization with large-scale data. We consider two important scenarios: one is optimizing large-scale Convex-Concave Saddle Point problem with a Separable structure, referred as Sep-CCSP; and the other is large-scale Bayesian posterior sampling. Two different settings of Sep-CCSP problem are considered, Sep-CCSP with strongly convex functions and non-strongly convex functions. We develop efficient stochastic coordinate descent methods for both of the two cases, which allow fast parallel processing for large-scale data. Both theoretically and empirically, it is demonstrated that the developed methods perform comparably, or more often, better than state-of-the-art methods. To handle the scalability issue in Bayesian posterior sampling, the stochastic approximation technique is employed, i.e., only touching a small mini batch of data items to approximate the full likelihood or its gradient. In order to deal with subsampling error introduced by stochastic approximation, we propose a covariance-controlled adaptive Langevin thermostat that can effectively dissipate parameter-dependent noise while maintaining a desired target distribution. This method achieves a substantial speedup over popular alternative schemes for large-scale machine learning applications.
|
4 |
On the Extensions of the Predictor-Corrector Proximal Multiplier (PCPM) Algorithm and Their ApplicationsRun Chen (9739499) 15 December 2020 (has links)
<div>Many real-world application problems can be modeled mathematically as constrained convex optimization problems. The scale of such problems can be extremely large, posing significant challenges to traditional centralized algorithms and calling for efficient and scalable distributed algorithms. However, most of the existing works on distributed optimization have been focusing on block-separable problems with simple, linear constraints, such as the consensus-type constraints. The focus of this dissertation is to propose distributed algorithms to solve (possibly non-separable) large-scale optimization problems with more complicated constraints with parallel updating (aka in Jacobi fashion), instead of sequential updating in the form of Gauss-Seidel iterations. In achieving so, this dissertation extends the predictor corrector proximal multiplier method (PCPM) to address three issues when solving a large-scale constrained convex optimization problem: (i) non-linear coupling constraints; (ii) asynchronous iterative scheme; (iii) non-separable objective function and coupling constraints. </div><div><br></div><div>The idea of the PCPM algorithm is to introduce a predictor variable for the Lagrangian multiplier to avoid the augmented term, hence removing the coupling of block variables while still achieving convergence without restrictive assumptions. Building upon this algorithmic idea, we propose three distributed algorithms: (i) N-block PCPM algorithm for solving N-block convex optimization problems with both linear and nonlinear coupling constraints; (ii) asynchronous N-block PCPM algorithm for solving linearly constrained N-block convex optimization problems; (iii) a distributed algorithm, named PC<sup>2</sup>PM, for solving large-scale convex quadratically constrained quadratic programs (QCQPs). The global convergence is established for each of the three algorithms. Extensive numerical experiments, using various data sets, are conducted on either a single-node computer or a multi-node computer cluster through message passing interface (MPI). Numerical results demonstrate the efficiency and scalability of the proposed algorithms.</div><div><br></div><div>A real application of the N-block PCPM algorithm to solve electricity capacity expansion models is also studied in this dissertation. A hybrid scenario-node-realization decomposition method, with extended nonanticipativity constraints, is proposed for solving the resulting large-scale optimization problem from a multi-scale, multi-stage stochastic program under various uncertainties with different temporal scales. A technique of orthogonal projection is exploited to simplify the iteration steps, which leads to a simplified N-block PCPM algorithm amenable to massive parallelization during iterations. Such an algorithm exhibits much more scalable numerical performance when compared with the widely used progressive hedging approach (PHA) for solving stochastic programming problems.</div>
|
5 |
Large-scale mixed integer optimization approaches for scheduling airline operations under irregularityPetersen, Jon D. 30 March 2012 (has links)
Perhaps no single industry has benefited more from advancements in computation, analytics, and optimization than the airline industry. Operations Research (OR) is now ubiquitous in the way airlines develop their schedules, price their
itineraries, manage their fleet, route their aircraft, and schedule their crew. These problems, among others, are well-known to industry practitioners and academics alike and arise within the context of the planning environment which takes place well in advance of the date of departure. One salient feature
of the planning environment is that decisions are made in a frictionless environment that do not consider perturbations to an existing schedule. Airline operations are rife with disruptions caused by factors such as convective weather, aircraft failure, air traffic control restrictions, network effects, among other irregularities. Substantially less work in the OR community has been examined within the context of the real-time operational environment.
While problems in the planning and operational environments are similar from a mathematical perspective, the complexity of the operational environment is exacerbated by two factors. First, decisions need to be made in as close to
real-time as possible. Unlike the planning phase, decision-makers do not have hours of time to return a decision. Secondly, there are a host of operational considerations in which complex rules mandated by regulatory agencies like the
Federal Administration Association (FAA), airline requirements, or union rules. Such restrictions often make finding even a feasible set of re-scheduling decisions an arduous task, let alone the global optimum.
The goals and objectives of this thesis are found in Chapter 1. Chapter 2 provides an overview airline operations and the current practices of disruption management employed at most airlines. Both the causes and the costs associated with irregular operations are surveyed. The role of airline Operations Control Center (OCC) is discussed in which serves as the real-time decision making environment that is important to understand for the body of this work.
Chapter 3 introduces an optimization-based
approach to solve the Airline Integrated Recovery (AIR) problem that simultaneously solves re-scheduling decisions for the operating schedule, aircraft routings, crew assignments, and passenger itineraries. The methodology
is validated by using real-world industrial data from a U.S. hub-and-spoke regional carrier and we show how the incumbent approach can dominate the
incumbent sequential approach in way that is amenable to the operational constraints imposed by a decision-making environment.
Computational effort is central to the efficacy of any algorithm present in a real-time decision making environment such as an OCC. The latter two chapters illustrate various methods that are shown to expedite more traditional large-scale optimization methods that are applicable a wide family of optimization problems, including the AIR problem. Chapter 4 shows how delayed constraint generation and column generation may be used simultaneously through use of alternate polyhedra that verify whether or not a given cut that has been generated from a subset of
variables remains globally valid.
While Benders' decomposition is a well-known algorithm to solve problems exhibiting a block structure, one possible drawback is slow convergence. Expediting Benders' decomposition has been explored in the literature through
model reformulation, improving bounds, and cut selection strategies, but little has been studied how to strengthen a standard cut. Chapter 5 examines four methods for the convergence may be accelerated through an affine transformation into the interior of the feasible set, generating a split cut induced by a standard Benders' inequality, sequential lifting, and superadditive lifting over a relaxation of a multi-row system. It is shown that the first two methods yield
the most promising results within the context of an AIR model.
|
6 |
Coordinated-distributed optimal control of large-scale linear dynamic systemsMarcos, Natalia I. Unknown Date
No description available.
|
7 |
Matrix completion : statistical and computational aspects / Complétion de matrice : aspects statistiques et computationnelsLafond, Jean 19 December 2016 (has links)
Dans cette thèse nous nous intéressons aux méthodes de complétion de matrices de faible rang et étudions certains problèmes reliés. Un premier ensemble de résultats visent à étendre les garanties statistiques existantes pour les modèles de complétion avec bruit additif sous-gaussiens à des distributions plus générales. Nous considérons en particulier les distributions multinationales et les distributions appartenant à la famille exponentielle. Pour ces dernières, nous prouvons l'optimalité (au sens minimax) à un facteur logarithmique près des estimateurs à pénalité norme trace. Un second ensemble de résultats concernent l'algorithme du gradient conditionnel qui est notamment utilisé pour calculer les estimateurs précédents. Nous considérons en particulier deux algorithmes de type gradient conditionnel dans le cadre de l'optimisation stochastique. Nous donnons les conditions sous lesquelles ces algorithmes atteignent les performance des algorithmes de type gradient projeté. / This thesis deals with the low rank matrix completion methods and focuses on some related problems, of both statistical and algorithmic nature. The first part of this work extends the existing statistical guarantees obained for sub-Gaussian additive noise models, to more general distributions. In particular,we provide upper bounds on the prediction error of trace norm penalized estimatorwith high probability for multinomial distributions and for distributions belonging to the exponential family. For the latter, we prove that the trace norm penalized estimators are minimax optimal up to a logarithmic factor by giving a lower bound.The second part of this work focuses on the conditionnal gradient algorithm, which is used in particular to compute previous estimators. We consider the stochastic optimization framework and gives the convergence rate of twovariants of the conditional gradient algorithm. We gives the conditions under which these algorithms match the performance of projected gradient algorithms.
|
8 |
Subject Specific Computational Models of the Knee to Predict Anterior Cruciate Ligament InjuryBorotikar, Bhushan S. 29 December 2009 (has links)
No description available.
|
9 |
LARGE SCALE LINEAR OPTIMIZATION FOR WIRELESS COMMUNICATION SYSTEMSHosny, Sameh Shawky Ibrahim 23 May 2017 (has links)
No description available.
|
10 |
Branch and Price Solution Approach for Order Acceptance and Capacity Planning in Make-to-Order OperationsMestry, Siddharth D, Centeno, Martha A, Faria, Jose A, Damodaran, Purushothaman, Chin-Sheng, Chen 25 March 2010 (has links)
The increasing emphasis on mass customization, shortened product lifecycles, synchronized supply chains, when coupled with advances in information system, is driving most firms towards make-to-order (MTO) operations. Increasing global competition, lower profit margins, and higher customer expectations force the MTO firms to plan its capacity by managing the effective demand. The goal of this research was to maximize the operational profits of a make-to-order operation by selectively accepting incoming customer orders and simultaneously allocating capacity for them at the sales stage. For integrating the two decisions, a Mixed-Integer Linear Program (MILP) was formulated which can aid an operations manager in an MTO environment to select a set of potential customer orders such that all the selected orders are fulfilled by their deadline. The proposed model combines order acceptance/rejection decision with detailed scheduling. Experiments with the formulation indicate that for larger problem sizes, the computational time required to determine an optimal solution is prohibitive. This formulation inherits a block diagonal structure, and can be decomposed into one or more sub-problems (i.e. one sub-problem for each customer order) and a master problem by applying Dantzig-Wolfe’s decomposition principles. To efficiently solve the original MILP, an exact Branch-and-Price algorithm was successfully developed. Various approximation algorithms were developed to further improve the runtime. Experiments conducted unequivocally show the efficiency of these algorithms compared to a commercial optimization solver. The existing literature addresses the static order acceptance problem for a single machine environment having regular capacity with an objective to maximize profits and a penalty for tardiness. This dissertation has solved the order acceptance and capacity planning problem for a job shop environment with multiple resources. Both regular and overtime resources is considered. The Branch-and-Price algorithms developed in this dissertation are faster and can be incorporated in a decision support system which can be used on a daily basis to help make intelligent decisions in a MTO operation.
|
Page generated in 0.0866 seconds