Spelling suggestions: "subject:"eikonal equation"" "subject:"eikonale equation""
1 |
Approximation of the 2D complex eikonal equation : analysis and simulationLiu, Peijia 30 January 2013 (has links)
High frequency wave propagation is well described even at caustics by Gaussian beams and the complex eikonal equation. In contrast to the real eikonal equation, the complex eikonal equation is elliptic and not well posed as an initial value problem. We develop a new model that approximates the 2D complex eikonal equation but is well posed as an initial value problem. This model consists of a coupled system of partial and ordinary differential equations. We prove that there exists a local solution to this new system by a Picard iteration method and show uniqueness under certain constraints. Different numerical approximations are then developed based on direct finite difference approximations or the method of characteristics. Numerical simulations with a variety of velocity profiles are presented and compared with solutions to the corresponding Helmholtz equation. / text
|
2 |
A group analysis for the eikonal equation for plane curves.January 1998 (has links)
by Yuen Wai Ching. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1998. / Includes bibliographical references (leaves 54-55). / Abstract also in Chinese. / Chapter 1 --- Introduction --- p.5 / Chapter 2 --- Group Analysis --- p.9 / Chapter 2.1 --- Groups and Differential Equations --- p.9 / Chapter 2.2 --- Prolongation --- p.11 / Chapter 2.3 --- The Prolongation Formula --- p.14 / Chapter 3 --- Symmetry Group For the Eikonal Equation --- p.17 / Chapter 4 --- An Optimal System For the Eikonal Equation --- p.25 / Chapter 5 --- Group Invariant Solutions --- p.33 / Chapter 5.1 --- Straight Lines --- p.33 / Chapter 5.2 --- Stationary Solutions --- p.33 / Chapter 5.3 --- Traveling Waves --- p.34 / Chapter 5.4 --- Circles --- p.37 / Chapter 5.5 --- Spirals --- p.38 / Chapter 6 --- Appendix --- p.50 / A Group Analysis for some Geometric Evolution Equations --- p.4 / Bibliography
|
3 |
Effects of internal waves and turbulent fluctuations on underwater acoustic propagationWojcik, Stefanie E. January 2006 (has links)
Thesis (M.S.)--Worcester Polytechnic Institute. / Keywords: ray chaos, eikonal equations, turbulence. Includes bibliographical references. (p.98-102).
|
4 |
Seismic imaging and velocity model building with the linearized eikonal equation and upwind finite-differencesLi, Siwei, 1987- 03 July 2014 (has links)
Ray theory plays an important role in seismic imaging and velocity model building. Although rays are the high-frequency asymptotic solutions of the wave equation and therefore do not usually capture all details of the wave physics, they provide a convenient and effective tool for a wide range of geophysical applications. Especially, ray theory gives rise to traveltimes. Even though wave-based methods for imaging and model building had attracted significant attentions in recent years, traveltime-based methods are still indispensable and should be further developed for improved accuracy and efficiency. Moreover, there are possibilities for new ray theoretical methods that might address the difficulties faced by conventional traveltime-based approaches. My thesis consists of mainly four parts. In the first part, starting from the linearized eikonal equation, I derive and implement a set of linear operators by upwind finite differences. These operators are not only consistent with fast-marching eikonal solver that I use for traveltime computation but also computationally efficient. They are fundamental elements in the numerical implementations of my other works. Next, I investigate feasibility of using the double-square-root eikonal equation for near surface first-break traveltime tomography. Compared with traditional eikonal-based approach, where the gradient in its adjoint-state tomography neglects information along the shot dimension, my method handles all shots together. I show that the double-square-root eikonal equation can be solved efficiently by a causal discretization scheme. The associated adjoint-state tomography is then realized by linearization and upwind finite-differences. My implementation does not need adjoint state as an intermediate parameter for the gradient and therefore the overall cost for one linearization update is relatively inexpensive. Numerical examples demonstrate stable and fast convergence of the proposed method. Then, I develop a strategy for compressing traveltime tables in Kirchhoff depth migration. The method is based on differentiating the eikonal equation in the source position, which can be easily implemented along with the fast-marching method. The resulting eikonal-based traveltime source-derivative relies on solving a version of the linearized eikonal equation, which is carried out by the upwind finite-differences operator. The source-derivative enables an accurate Hermite interpolation. I also show how the method can be straightforwardly integrated in anti-aliasing and Kirchhoff redatuming. Finally, I revisit the classical problem of time-to-depth conversion. In the presence of lateral velocity variations, the conversion requires recovering geometrical spreading of the image rays. I recast the governing ill-posed problem in an optimization framework and solve it iteratively. Several upwind finite-differences linear operators are combined to implement the algorithm. The major advantage of my optimization-based time-to-depth conversion is its numerical stability. Synthetic and field data examples demonstrate practical applicability of the new approach. / text
|
5 |
Effects of Internal Waves and Turbulent Fluctuations on Underwater Acoustic PropagationWojcik, Stefanie E 09 March 2006 (has links)
A predictive methodology for received signal variation as a function of ocean perturbations is developed using a ray-based analysis of the effects of internal waves and ocean turbulence on long and short range underwater acoustic propagation. In the present formulation the eikonal equations are considered in the form of a second-order, nonlinear ordinary differential equation with harmonic excitation due to an internal wave. The harmonic excitation is taken imperfect, i.e., with a random phase modulation due to Gaussian white noise, accounting for both chaotic and stochastic behavior. Simulated turbulence is represented using the potential theory line vortex approach. Simulations are conducted for long range propagation, 1000km, containing internal wave fields with added deterministic effects and are compared to those fields with non-deterministic properties. These results show that long range acoustic propagation has a very strong dependence on the intensity of deterministic fluctuations. Numerical analysis for short range propagation, 10km, was constructed for sound passage through the following perturbation scenarios: simulated turbulence, an internal wave field, and a field of internal waves and simulated turbulence combined. Investigation over varied initial conditions and perturbation strengths suggests internal wave environments supply the majority of spatial variation and turbulent eddy fields are primarily responsible for delay fluctuation. Spectra of the variations in mean travel velocity reveal internal wave dominance to be dependent on the intensity of the wave.
|
6 |
Modelamento sismico assintotico utilizando diferenças finitas / Asymptotic seismic modeling using finite-differencesPila, Matheus Fabiano, 1979- 03 November 2005 (has links)
Orientadores: Lucio Tunes dos Santos, Maria Amélia Novais Schleicher / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-04T04:00:54Z (GMT). No. of bitstreams: 1
Pila_MatheusFabiano_M.pdf: 955722 bytes, checksum: adb4b488d6a2e8995d1f8985186d2693 (MD5)
Previous issue date: 2005 / Mestrado / Geofisica Computacional / Mestre em Matemática Aplicada
|
7 |
Dijkstrův algoritmus v problému proudění chodců / On the Dijkstra's algorithm in the pedestrian flow problemPetrášová, Tereza January 2018 (has links)
Title: On the Dijkstra's algorithm in the Pedestrian Flow Problem Author: Tereza Petrášová Department: Department of Numerical Mathematics Supervisor: doc. RNDr. Jiří Felcman, CSc., Department of Numerical Mathe- matics Abstract: The pedestrian flow problem is described by a coupled system of the first order hyperbolic partial differential equations with the source term and by the functional minimization problem for the desired direction of motion. The functional minimization is based on the modified Dijkstra's algorithm used to find the minimal path to the exit. The original modification of the Dijkstra's algorithm is proposed to increase its efficiency in the pedestrian flow problem. This approach is compared with the algorithm of Bornemann and Rasch for determination of the desired direction of motion based on the solution of the so- called Eikonal equation. Both approaches are numerically tested in the framework of two splitting algorithms for solution of the coupled problem. The former splitting algorithm is based on the finite volume method yielding for the given time instant the piecewise constant approximation of the solution. The latter one uses the implicit discretization by a space-time discontinuous Galerkin method based on the discontinuous piecewise polynomial approximation. The numerical examples...
|
8 |
Nouveaux algorithmes efficaces de modélisation 2D et 3D : Temps des premières arrivées, angles à la source et amplitudes / New efficient 2D and 3D modeling algorithms to compute travel times, take-off angles and amplitudesBelayouni, Nidhal 25 April 2013 (has links)
Les temps de trajet, amplitudes et angles à la source des ondes sismiques sont utilisés dans de nombreuses applications telles que la migration, la tomographie, l'estimation de la sensibilité de détection et la localisation des microséismes. Dans le contexte de la microsismicité, il est nécessaire de calculer en quasi temps réel ces attributs avec précision. Nous avons développé ici un ensemble d'algorithmes rapides et précis en 3D pour des modèles à fort contraste de vitesse.Nous présentons une nouvelle méthode pour calculer les temps de trajet, les amplitudes et les angles à la source des ondes correspondant aux premières arrivées. Plus précisément, nous résolvons l'équation Eikonal, l'équation de transport et l'équation des angles en nous basant sur une approche par différences finies pour des modèles de vitesse en 3D. Nous proposons une nouvelle méthode hybride qui bénéficie des avantages respectifs de plusieurs approches existantes de résolution de l'équation Eikonal. En particulier, les approches classiques proposent généralement de résoudre directement les équations et font l'approximation localement d'une onde plane. Cette approximation n'est pas bien adaptée au voisinage de la source car la courbure du front d'onde est importante. Des erreurs de temps de trajet sont alors générées près de la position de la source, puis propagées à travers tout le modèle de vitesse. Ceci empêche de calculer correctement les amplitudes et les angles à la source puisqu'ils reposent sur les gradients des temps. Nous surmontons cette difficulté en introduisant les opérateurs sphériques ; plus précisément nous reformulons les temps de trajet, amplitudes et angles à la source par la méthode des perturbations.Nous validons nos nouvelles méthodes pour différents modèles à fort contraste de vitesse en 2D et 3D et montrons notre contribution par rapport aux approches existantes. Nos résultats sont similaires à ceux calculés en utilisant la modélisation de la forme d'onde totale alors qu'ils sont bien moins coûteux en temps de calcul. Ces résultats ouvrent donc de nouvelles perspectives pour de nombreuses applications telles que la migration, l'estimation de la sensibilité de détection et l'inversion des mécanismes au foyer. / Traveltimes, amplitudes and take-off angles of seismic waves are used in many applications such as migration, tomography, detection sensitivity estimation and microseism location. In the microseismicty context it is necessary to compute in near real time accurately these attributes. Here we developed a set of fast and accurate algorithms in 3D for highly contrasted velocity models.We present a new accurate method for computing first arrival traveltimes, amplitudes and take-off angles; more precisely we solve the Eikonal, transport and take-off angle equations based on a finite difference approach for 3D velocity models. We propose a new hybrid method that benefits from the advantages of several existing Eikonal solvers. Common approaches that solve directly these equations assume that we are locally propagating a plane wave. This approximation is not well adapted in the neighborhood of the source since the wavefront curvature is important. Travel times errors are generated near the source position and then propagated through the whole velocity model. This prevents from properly calculating the amplitudes and the take-off angles since they rely on the travel time gradients that are not accurate. We overcome this difficulty by introducing spherical operators. Indeed we reformulate the traveltimes, amplitudes and take-off angles with the perturbation method.We validate our new methods on various highly contrasted velocity models in 2D and 3D and show our contribution compared to other existing approaches. Our results are similar to those computed using full waveform modeling while they are obtained in a much shorter CPU time. These results open thus new perspectives for several applications such as migration, detection sensitivity estimation and focal mechanism inversion.
|
9 |
Problèmes inverses pour la cartographie optique cardiaque / Inverse problems for cardiac optical mappingRavon, Gwladys 16 December 2015 (has links)
Depuis les années 80 la cartographie optique est devenu un outil important pour l'étude et la compréhension des arythmies cardiaques. Cette expérience permet la visualisation de flux de fluorescence à la surface du tissu ; fluorescence qui est directement liée au potentiel transmembranaire. Dans les observations en surface se cachent des informations sur la distribution en trois dimensions de ce potentiel. Nous souhaitons exploiter ces informations surfaciques afin de reconstruire le front de dépolarisation dans l'épaisseur. Pour cela nous avons développé une méthode basée sur la résolution d'un problème inverse. Le modèle direct est composée de deux équations de diffusion et d'une paramétrisation du front de dépolarisation. La résolution du problème inverse permet l'identification des caractéristiques du front. La méthode a été testée sur des données in silico avec différentes manières de caractériser le front (sphère qui croît au cours du temps, équation eikonale). Les résultats obtenus sont très satisfaisants et comparés à une méthode développée par Khait et al. [1]. Le passage à l'étude sur données expérimentales a mis en évidence un problème au niveau du modèle. Nous détaillons ici les pistes explorées pour améliorer le modèle : illumination constante, paramètres optiques, précision de l'approximation de diffusion. Plusieurs problèmes inverses sont considérés dans ce manuscrit, ce qui implique plusieurs fonctionnelles à minimiser et plusieurs gradients associés. Pour chaque cas, le calcul du gradient est explicité, le plus souvent par la méthode de l'adjoint. La méthode développée a aussi été appliquée à des données autres que la cartographie optique cardiaque. / Since the 80's optical mapping has become an important tool for the study and the understanding of cardiac arythmias. This experiment allows the visualization of fluorescence fluxes through tissue surface. The fluorescence is directly related to the transmembrane potential. Information about its three-dimension distribution is hidden in the data on the surfaces. Our aim is to exploit this surface measurements to reconstruct the depolarization front in the thickness. For that purpose we developed a method based on the resolution of an inverse problem. The forward problem is made of two diffusion equations and the parametrization of the wavefront. The inverse problem resolution enables the identification of the front characteristics. The method has been tested on in silico data with different ways to parameter the front (expanding sphere, eikonal equation). The obtained results are very satisfying, and compared to a method derived by Khait et al. [1]. Moving to experimental data put in light an incoherence in the model. We detail the possible causes we explored to improve the model : constant illumination, optical parameters, accuracy of the diffusion approximation. Several inverse problems are considered in this manuscript, that involves several cost functions and associated gradients. For each case, the calculation of the gradient is explicit, often with the gradient method. The presented method was also applied on data other than cardiac optical mapping.
|
Page generated in 0.1006 seconds