• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sommes connexes généralisées pour des problèmes issus de la géométrie / Somme connesse generalizzate per problemi della geometria / Generalized connected sums for problems issued from the geometry

Mazzieri, Lorenzo 24 January 2008 (has links)
Ces deux dernières décennies, les techniques de somme connexe essentiellement basées sur des outils d'analyse ont permis de faire des progrès importants dans la compréhension de nombreux problèmes non linéaires issus de la géométrie (étude des métriques à courbure scalaire constante en géométrie Riemannienne, métriques auto-duales, métrique ayant des groupes d'holonomie spéciaux, métriques extrémales en géométrie Kaehlerienne, équations de Yang-Mills, étude des surfaces minimales et des surfaces à courbure moyenne constante, métriques d'Einstein, etc.). Ces techniques se sont avérées être un outil puissant pour démontrer l'existence de solutions à des problèmes hautement non linéaires. Si les techniques permettant d'effectuer des sommes connexes en des points isolés sont bien comprises et fréquemment utilisées, les techniques permettant d'effectuer des sommes connexes le long de sous-variétés ne sont pas encore bien maîtrisées. Le principal objectif de cette thèse est de combler (partiellement) cette lacune en développant de telles techniques applicables dans le cadre de l'étude des métriques à courbure scalaire constante et aussi dans le cadre de l'étude des équations de comptabilité d'Einstein en relativité générale / These last two decades the connected sum techniques, essentially based on analytical tools, are revealed to be a powerful instrument to understand solutions of several nonlinear problem issued from the geometry (constant scalar curvature metrics in Riemannian geometry, self-dual metrics, metrics with special holonomy group, extremal Kaehler metrics, Yang-Mills equations, minimal and constant mean curvature surfaces, Einstein metrics, etc.). Even tough the techniques which allows one to consider the connected sum at points for solutions of nonlinear PDE's are frequently used and deeply understood, the analogous techniques for connected sums along sub-manifolds have not been mastered yet. The main purpose of this thesis is to (partially) plug this gap by developing such techniques in the context of the constant scalar curvature metrics and the Einstein constraint equations in general relativity
2

Construction de solutions pour les équations de contraintes en relativité générale et remarques sur le théorème de la masse positive / Construction of solutions to the Einstein constrainit equations in general relativity and comments on the positive mass theorem

Nguyen, The-Cang 11 December 2015 (has links)
Dans cette thèse nous étudions deux problèmes issus de la relativité générale : la construction de données initiales pour le problème de Cauchy des équations d’Einstein et le théorème de la masse positive. Nous construisons tout d’abord des données initiales en utilisant la méthode dite conforme introduite par Lichnerowicz [Lichnerowicz, 1944], Y. Choquet-Bruhat–J. York [Choquet-Bruhat et York, 1980] et Y. Choquet-Bruhat–J. Isenberg– D. Pollack [Choquet-Bruhat et al., 2007a]. Plus particulièrement, nous étudions les équations –de contrainte conforme– qui apparaissent dans cette méthode sur des variétés riemanniennes compactes de dimension n > 3. Dans cette thèse, nous donnons une preuve simplifiée du résultat de [Dahl et al., 2012], puis nous étendons et nous généralisons les théorèmes de M. Holst–G. Nagy–G. Tsogtgerel [Holst et al., 2009] et de D. Maxwell [Maxwell, 2009] dans le cas de données initiales à courbure moyenne fortement nonconstante. Nous donnons au passage un point de vue unifié sur ces résultats. En parallèle, nous donnons des résultats de non-existence et de non-unicité pour les équations de la méthode conforme sous certaines hypothèses. / The aim of this thesis is the study of two topical issues arising from general relativity: finding initial data for the Cauchy problem with respect to the Einstein equations and the positive mass theorem. For the first issue, in the context of the conformal method introduced by Lichnerowicz [Lichnerowicz, 1944], Y. Choquet-Bruhat–J. York [Choquet-Bruhat et York, 1980] and Y. Choquet-Bruhat–J. Isenberg–D. Pollack [Choquet-Bruhat et al., 2007a], we consider the conformal constraint equations on compact Riemannian manifolds of dimension n > 3. In this thesis, we simplify the proof of [Dahl et al., 2012, Theorem 1.1], extend and sharpen the far-from CMC result proven by Holst– Nagy–Tsogtgerel [Holst et al., 2009], Maxwell [Maxwell, 2009] and give an unifying viewpoint of these results. Besides discussing the solvability of the conformal constraint equations, we will also show nonexistence and nonuniqueness results for solutions to the conformal constraint equations under certain assumptions.

Page generated in 0.1498 seconds