• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Geometria e topologia das superfícies através de recorte e colagem

Malaguetta, Patrícia Casagrande [UNESP] 25 October 2010 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:27:09Z (GMT). No. of bitstreams: 0 Previous issue date: 2010-10-25Bitstream added on 2014-06-13T19:26:11Z : No. of bitstreams: 1 malaguetta_pc_me_rcla.pdf: 1127990 bytes, checksum: e330d213aef7a495926e73f9eb54acdb (MD5) / Universidade Estadual Paulista (UNESP) / O presente projeto trata a topologia de superfícies fechadas através de ideias topológicas intuitivas. Mostramos que toda superfície fechada e orientável é topologicamente uma Esfera ou um Toro, ou ainda uma soma conexa de dois ou mais Toros; e também que toda superfície fechada e não-orientável é topologicamente um Plano Projetivo ou uma soma conexa de dois ou mais Planos Projetivos. Desta forma, obtemos uma classificação topológica para as superfícies fechadas orientáveis e não-orientáveis / This project deals with the topology of closed surfaces using intuitive topological ideas. We show that every closed surface orientable is topologically a Sphere or a Torus, or a connected sum of two or more Tori, and also that every closed surface and non-orientable is topologically a Projective Plane or a connected sum of two or more Projective Planes. Therefore, we obtain a topological classification for closed surfaces, orientable and non-orientable
2

Geometria e topologia das superfícies através de recorte e colagem /

Malaguetta, Patrícia Casagrande. January 2010 (has links)
Orientador: Elíris Cristina Rizziolli / Banca: João Carlos V. Sampaio / Banca: João Peres Vieira / Resumo: O presente projeto trata a topologia de superfícies fechadas através de ideias topológicas intuitivas. Mostramos que toda superfície fechada e orientável é topologicamente uma Esfera ou um Toro, ou ainda uma soma conexa de dois ou mais Toros; e também que toda superfície fechada e não-orientável é topologicamente um Plano Projetivo ou uma soma conexa de dois ou mais Planos Projetivos. Desta forma, obtemos uma classificação topológica para as superfícies fechadas orientáveis e não-orientáveis / Abstract: This project deals with the topology of closed surfaces using intuitive topological ideas. We show that every closed surface orientable is topologically a Sphere or a Torus, or a connected sum of two or more Tori, and also that every closed surface and non-orientable is topologically a Projective Plane or a connected sum of two or more Projective Planes. Therefore, we obtain a topological classification for closed surfaces, orientable and non-orientable / Mestre
3

Sommes connexes généralisées pour des problèmes issus de la géométrie / Somme connesse generalizzate per problemi della geometria / Generalized connected sums for problems issued from the geometry

Mazzieri, Lorenzo 24 January 2008 (has links)
Ces deux dernières décennies, les techniques de somme connexe essentiellement basées sur des outils d'analyse ont permis de faire des progrès importants dans la compréhension de nombreux problèmes non linéaires issus de la géométrie (étude des métriques à courbure scalaire constante en géométrie Riemannienne, métriques auto-duales, métrique ayant des groupes d'holonomie spéciaux, métriques extrémales en géométrie Kaehlerienne, équations de Yang-Mills, étude des surfaces minimales et des surfaces à courbure moyenne constante, métriques d'Einstein, etc.). Ces techniques se sont avérées être un outil puissant pour démontrer l'existence de solutions à des problèmes hautement non linéaires. Si les techniques permettant d'effectuer des sommes connexes en des points isolés sont bien comprises et fréquemment utilisées, les techniques permettant d'effectuer des sommes connexes le long de sous-variétés ne sont pas encore bien maîtrisées. Le principal objectif de cette thèse est de combler (partiellement) cette lacune en développant de telles techniques applicables dans le cadre de l'étude des métriques à courbure scalaire constante et aussi dans le cadre de l'étude des équations de comptabilité d'Einstein en relativité générale / These last two decades the connected sum techniques, essentially based on analytical tools, are revealed to be a powerful instrument to understand solutions of several nonlinear problem issued from the geometry (constant scalar curvature metrics in Riemannian geometry, self-dual metrics, metrics with special holonomy group, extremal Kaehler metrics, Yang-Mills equations, minimal and constant mean curvature surfaces, Einstein metrics, etc.). Even tough the techniques which allows one to consider the connected sum at points for solutions of nonlinear PDE's are frequently used and deeply understood, the analogous techniques for connected sums along sub-manifolds have not been mastered yet. The main purpose of this thesis is to (partially) plug this gap by developing such techniques in the context of the constant scalar curvature metrics and the Einstein constraint equations in general relativity
4

Additivity of the Crossing Number of Links

Smith, Lukas Jayke 24 April 2023 (has links)
No description available.

Page generated in 0.0601 seconds