Spelling suggestions: "subject:"El niño - southern oscillation"" "subject:"El niño - southern scillation""
21 |
Identificação da influencia do El Niño: oscilação sul e oscilação decenal do Pacífico sobre as geleiras andinas tropicais usando sensoriamento remoto e parâmetros climáticosVeettil, Bijeesh Kozhikkodan January 2017 (has links)
Nas últimas décadas, particularmente desde a década de 1970, testemunhou-se um rápido recuo das geleiras em várias partes dos Andes tropicais. Uma tendência de aquecimento foi observada na região durante o mesmo período, com um hiato recente desde no início de 2010. No entanto, este hiato pode não ser o principal fator a influenciar as observações de aquecimento e recuo das geleiras em altitudes elevadas nos Andes tropicais. Com o surgimento de imagens de alta resolução espacial e espectral, e de modelos digitais de elevação (MDE) de alta resolução, agora é possível compreender as mudanças multitemporais das geleiras, o que era difícil de realizar utilizando as técnicas tradicionais e os dados de baixa resolução. Neste trabalho foram calculadas as variações da linha de neve das geleiras selecionadas ao longo dos Andes tropicais desde o início de 1980. A linha de neve máxima observada durante a estação seca (inverno austral) nos trópicos pode ser considerada como equivalente à linha de equilíbrio que separa a zona de acumulação da zona de ablação. A fim de reduzir o erro na estimativa da linha de neve foram consideradas somente as geleiras com declividades menores que 20o. Dependendo da região estudada e da presença de cobertura de nuvens, foram selecionadas imagens de várias fontes. As imagens da série Landsat (MSS, TM, ETM+ e OLI), EO1 OLI, ASTER e IRS LISS III foram usadas junto com MDE do ASTER GDEM-v2. Três bandas espectrais (TM5 - infravermelho médio, TM4- infravermelho próximo e TM2 - verde) foram utilizadas para calcular a linha de neve durante a estação seca, aplicando limiares adequados para TM4 e TM2. Os conjuntos de dados meteorológicos de várias fontes também foram analisados para observar as mudanças na precipitação, na temperatura e na umidade que influenciam os parâmetros glaciológicos como: o balanço de massa e a linha de equilíbrio. Geleiras representativas nos trópicos internos e trópicos externos foram consideradas separadamente dentro de um novo quadro, que foi baseado na precipitação, umidade e condições de temperatura ao longo da América do Sul. Neste âmbito, os Andes tropicais são classificados em trópicos internos, trópicos externos úmidos do norte, trópicos externos úmidos do sul e os trópicos externos secos. O Vulcão Cotopaxi no Equador (trópicos internos), o Nevado Caullaraju-Pastoruri que é uma geleira na Cordilheira Branca no Peru (trópicos externos úmidos do norte), o Nevado Cololo na Cordilheira Apolobamba na Bolívia (trópicos externos úmidos do sul), o Nevado Coropuna na Cordilheira Ampato no Peru e o Nevado Sajama na Cordilheira Ocidental da Bolívia (trópicos externos secos) são as geleiras representativas de cada grupo consideradas neste estudo. As geleiras tropicais nos trópicos internos, especialmente as situadas perto da Zona de Convergência Intertropicais (ZCIT), são mais vulneráveis a aumentos na temperatura e menos sensíveis a variações na precipitação. Em contraste, as geleiras nos trópicos externos respondem à variabilidade de precipitação muito rapidamente em comparação com a variação de temperatura, particularmente quando se deslocam para as regiões subtropicais. A dependência do balanço de massa sobre as características de sublimação também aumenta a partir dos trópicos internos para os trópicos externos. As condições de aquecimento, com maior umidade, tendem a aumentar a perda de massa por causa do derretimento em vez da sublimação. A elevação da umidade nos trópicos externos pode alterar as geleiras dominadas pela sublimação (nos trópicos externos e subtrópicos) e para as geleiras dominadas por derretimento. Observa-se que as geleiras próximas da ZCIT (trópicos internos e trópicosexternos úmidos do sul) estão recuando mais rapidamente como uma resposta ao aquecimento global, enquanto que as geleiras nos trópicos externos úmidos do norte e trópicos externos secos mostraram recuo relativamente mais lento. Possivelmente isso pode ser devido à ocorrência de fases frias do El Niño - Oscilação Sul (ENOS) conjuntamente com a Oscilação Decenal do Pacífico (ODP). As anomalias observadas nas variáveis meteorológicas seguem os padrões de ODP e as variações anuais de linha de neve seguem eventos de El Niño particularmente na fase ODP quente. No entanto, uma forte correlação entre as variações da linha de neve e dos fenômenos ENOS (e ODP) não está estabelecida. As geleiras do Equador mostram menos retração em resposta à tendência de aquecimento se comparadas às observações feitas por outros pesquisadores na Colômbia e na Venezuela, provavelmente devido à grande altitude das geleiras equatorianas. Em poucas palavras, as geleiras menores e em baixas altitudes nos trópicos internos e trópicos externos úmidos do sul estão desaparecendo mais rapidamente do que outras geleiras nos Andes tropicais. Também se observou neste estudo a existência de uma propriedade direcional no recuo das geleiras, o que não se observou em quaisquer outros estudos recentes. As geleiras nas cordilheiras leste do Peru e da Bolívia, que alimentam muitos rios nos lados leste das cordilheiras orientais, estão recuando do que aquelas geleiras situadas nas encostas ocidentais dos Andes tropicais. / Recent decades, particularly since the late 1970s, witnessed a rapid retreat of glaciers in many parts of the tropical Andes. A warming trend is observed in this region during the same period, with a recent hiatus since the early 2010s. However, this hiatus is observed to have not influenced the retreat of high elevation glaciers in the tropical Andes. Due to the emergence of high spatial and spectral resolution images and high quality digital elevation models (DEM), it is now possible to understand the multi-temporal glacier changes compared with the techniques that existed a few decades before. We calculated the snowline variations of selected glaciers along the tropical Andes since the early 1980s. The maximum snowline observed during the dry season (austral winter) in the tropics can be considered as nearly equivalent to the equilibrium line that separates the accumulation zone from the ablation zone. In order to reduce the error in the estimated snowline, glaciers with slopes < 20o only were considered in this research. Depending on the study region and the presence of cloud cover, images from multiple sources were selected. Landsat series (MSS, TM, ETM+, and OLI), EO1 OLI, ASTER, and IRS LISS III images were used along with digital elevation models (DEM) from ASTER GDEM-v2. Three wavebands (TM5 - Middle Infrared, TM4 - Near Infrared, and TM2 - Green) were used to calculate the dry season snowline, after applying suitable threshold values to TM4 and TM2. Meteorological datasets from multiple sources were also analysed to observe the changes in precipitation, temperature, and humidity that influence key glaciological parameters such as the mass balance and the equilibrium line. Representative glaciers in the inner and the outer tropical Andes were considered separately within a new framework, which is based on the precipitation, humidity, and temperature conditions along the South America. In this framework, tropical Andes are classified in to inner tropics, northern wet outer tropics, southern wet outer tropics, and dry outer tropics. Cotopaxi ice-covered volcano, Ecuador (inner tropics), Nevado Caullaraju-Pastoruri Glacier, Cordillera Blanca, Peru (northern wet outer tropics), Nevado Cololo, Cordillera Apolobamba, Bolivia (southern wet outer tropics), and Nevado Coropuna, Cordillera Ampato Peru and Nevado Sajama, Cordillera Occidental, Bolivia (dry outer tropics) are the representative glaciers in each group considered in this study. Inner tropical glaciers, particularly those situated near the January Intertropical Convergence Zone (ITCZ), are more vulnerable to increases in temperature and these glaciers are less sensitive to variations in precipitation. In contrast, outer tropical glaciers respond to precipitation variability very rapidly in comparison with the temperature variability, particularly when moving towards the subtropics. Mass balance dependency on sublimation characteristics also increases from the inner tropics to the outer tropics. Warming conditions with higher humidity tends to enhance mass loss due to melting rather than sublimation. Increased humidity observed in the outer tropics may change the sublimation dominated glaciers in the outer tropics and subtropics to melting dominated ones in the future. It is observed that the glaciers above and near the January ITCZ (inner tropics and southern wet outer tropics) are retreating faster as a response to global warming, whereas the glaciers in the northern wet outer tropics and dry outer tropics show relatively slower retreat. This can be possibly due to the occurrence of cold phases of El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) together. The observed anomalies in the meteorological variables slightly follow PDO patterns and the variations in annual snowlines follows El Niño events, particularly when in phase with warm PDO. However, a strong correlation between snowline variations and ENSO (and PDO) is not established. Mountain glaciers in Ecuador show less retreat in response to the warming trend compared with observations done by other researchers in Colombia and Venezuela, probably due to very high altitude of the Ecuadorean glaciers. In a nutshell, smaller glaciers at lower altitudes in the inner tropics and the southern wet outer tropics are disappearing faster than other glaciers in the tropical Andes. Another observation made in this study is the directional property of glacier retreat, which was not covered in any other recent studies. Those glaciers on the eastern cordilleras of Peru and Bolivia, which feed many rivers on the eastern sides of the eastern cordilleras, are retreating faster than those glaciers situated on the western sides.
|
22 |
Identificação da influencia do El Niño: oscilação sul e oscilação decenal do Pacífico sobre as geleiras andinas tropicais usando sensoriamento remoto e parâmetros climáticosVeettil, Bijeesh Kozhikkodan January 2017 (has links)
Nas últimas décadas, particularmente desde a década de 1970, testemunhou-se um rápido recuo das geleiras em várias partes dos Andes tropicais. Uma tendência de aquecimento foi observada na região durante o mesmo período, com um hiato recente desde no início de 2010. No entanto, este hiato pode não ser o principal fator a influenciar as observações de aquecimento e recuo das geleiras em altitudes elevadas nos Andes tropicais. Com o surgimento de imagens de alta resolução espacial e espectral, e de modelos digitais de elevação (MDE) de alta resolução, agora é possível compreender as mudanças multitemporais das geleiras, o que era difícil de realizar utilizando as técnicas tradicionais e os dados de baixa resolução. Neste trabalho foram calculadas as variações da linha de neve das geleiras selecionadas ao longo dos Andes tropicais desde o início de 1980. A linha de neve máxima observada durante a estação seca (inverno austral) nos trópicos pode ser considerada como equivalente à linha de equilíbrio que separa a zona de acumulação da zona de ablação. A fim de reduzir o erro na estimativa da linha de neve foram consideradas somente as geleiras com declividades menores que 20o. Dependendo da região estudada e da presença de cobertura de nuvens, foram selecionadas imagens de várias fontes. As imagens da série Landsat (MSS, TM, ETM+ e OLI), EO1 OLI, ASTER e IRS LISS III foram usadas junto com MDE do ASTER GDEM-v2. Três bandas espectrais (TM5 - infravermelho médio, TM4- infravermelho próximo e TM2 - verde) foram utilizadas para calcular a linha de neve durante a estação seca, aplicando limiares adequados para TM4 e TM2. Os conjuntos de dados meteorológicos de várias fontes também foram analisados para observar as mudanças na precipitação, na temperatura e na umidade que influenciam os parâmetros glaciológicos como: o balanço de massa e a linha de equilíbrio. Geleiras representativas nos trópicos internos e trópicos externos foram consideradas separadamente dentro de um novo quadro, que foi baseado na precipitação, umidade e condições de temperatura ao longo da América do Sul. Neste âmbito, os Andes tropicais são classificados em trópicos internos, trópicos externos úmidos do norte, trópicos externos úmidos do sul e os trópicos externos secos. O Vulcão Cotopaxi no Equador (trópicos internos), o Nevado Caullaraju-Pastoruri que é uma geleira na Cordilheira Branca no Peru (trópicos externos úmidos do norte), o Nevado Cololo na Cordilheira Apolobamba na Bolívia (trópicos externos úmidos do sul), o Nevado Coropuna na Cordilheira Ampato no Peru e o Nevado Sajama na Cordilheira Ocidental da Bolívia (trópicos externos secos) são as geleiras representativas de cada grupo consideradas neste estudo. As geleiras tropicais nos trópicos internos, especialmente as situadas perto da Zona de Convergência Intertropicais (ZCIT), são mais vulneráveis a aumentos na temperatura e menos sensíveis a variações na precipitação. Em contraste, as geleiras nos trópicos externos respondem à variabilidade de precipitação muito rapidamente em comparação com a variação de temperatura, particularmente quando se deslocam para as regiões subtropicais. A dependência do balanço de massa sobre as características de sublimação também aumenta a partir dos trópicos internos para os trópicos externos. As condições de aquecimento, com maior umidade, tendem a aumentar a perda de massa por causa do derretimento em vez da sublimação. A elevação da umidade nos trópicos externos pode alterar as geleiras dominadas pela sublimação (nos trópicos externos e subtrópicos) e para as geleiras dominadas por derretimento. Observa-se que as geleiras próximas da ZCIT (trópicos internos e trópicosexternos úmidos do sul) estão recuando mais rapidamente como uma resposta ao aquecimento global, enquanto que as geleiras nos trópicos externos úmidos do norte e trópicos externos secos mostraram recuo relativamente mais lento. Possivelmente isso pode ser devido à ocorrência de fases frias do El Niño - Oscilação Sul (ENOS) conjuntamente com a Oscilação Decenal do Pacífico (ODP). As anomalias observadas nas variáveis meteorológicas seguem os padrões de ODP e as variações anuais de linha de neve seguem eventos de El Niño particularmente na fase ODP quente. No entanto, uma forte correlação entre as variações da linha de neve e dos fenômenos ENOS (e ODP) não está estabelecida. As geleiras do Equador mostram menos retração em resposta à tendência de aquecimento se comparadas às observações feitas por outros pesquisadores na Colômbia e na Venezuela, provavelmente devido à grande altitude das geleiras equatorianas. Em poucas palavras, as geleiras menores e em baixas altitudes nos trópicos internos e trópicos externos úmidos do sul estão desaparecendo mais rapidamente do que outras geleiras nos Andes tropicais. Também se observou neste estudo a existência de uma propriedade direcional no recuo das geleiras, o que não se observou em quaisquer outros estudos recentes. As geleiras nas cordilheiras leste do Peru e da Bolívia, que alimentam muitos rios nos lados leste das cordilheiras orientais, estão recuando do que aquelas geleiras situadas nas encostas ocidentais dos Andes tropicais. / Recent decades, particularly since the late 1970s, witnessed a rapid retreat of glaciers in many parts of the tropical Andes. A warming trend is observed in this region during the same period, with a recent hiatus since the early 2010s. However, this hiatus is observed to have not influenced the retreat of high elevation glaciers in the tropical Andes. Due to the emergence of high spatial and spectral resolution images and high quality digital elevation models (DEM), it is now possible to understand the multi-temporal glacier changes compared with the techniques that existed a few decades before. We calculated the snowline variations of selected glaciers along the tropical Andes since the early 1980s. The maximum snowline observed during the dry season (austral winter) in the tropics can be considered as nearly equivalent to the equilibrium line that separates the accumulation zone from the ablation zone. In order to reduce the error in the estimated snowline, glaciers with slopes < 20o only were considered in this research. Depending on the study region and the presence of cloud cover, images from multiple sources were selected. Landsat series (MSS, TM, ETM+, and OLI), EO1 OLI, ASTER, and IRS LISS III images were used along with digital elevation models (DEM) from ASTER GDEM-v2. Three wavebands (TM5 - Middle Infrared, TM4 - Near Infrared, and TM2 - Green) were used to calculate the dry season snowline, after applying suitable threshold values to TM4 and TM2. Meteorological datasets from multiple sources were also analysed to observe the changes in precipitation, temperature, and humidity that influence key glaciological parameters such as the mass balance and the equilibrium line. Representative glaciers in the inner and the outer tropical Andes were considered separately within a new framework, which is based on the precipitation, humidity, and temperature conditions along the South America. In this framework, tropical Andes are classified in to inner tropics, northern wet outer tropics, southern wet outer tropics, and dry outer tropics. Cotopaxi ice-covered volcano, Ecuador (inner tropics), Nevado Caullaraju-Pastoruri Glacier, Cordillera Blanca, Peru (northern wet outer tropics), Nevado Cololo, Cordillera Apolobamba, Bolivia (southern wet outer tropics), and Nevado Coropuna, Cordillera Ampato Peru and Nevado Sajama, Cordillera Occidental, Bolivia (dry outer tropics) are the representative glaciers in each group considered in this study. Inner tropical glaciers, particularly those situated near the January Intertropical Convergence Zone (ITCZ), are more vulnerable to increases in temperature and these glaciers are less sensitive to variations in precipitation. In contrast, outer tropical glaciers respond to precipitation variability very rapidly in comparison with the temperature variability, particularly when moving towards the subtropics. Mass balance dependency on sublimation characteristics also increases from the inner tropics to the outer tropics. Warming conditions with higher humidity tends to enhance mass loss due to melting rather than sublimation. Increased humidity observed in the outer tropics may change the sublimation dominated glaciers in the outer tropics and subtropics to melting dominated ones in the future. It is observed that the glaciers above and near the January ITCZ (inner tropics and southern wet outer tropics) are retreating faster as a response to global warming, whereas the glaciers in the northern wet outer tropics and dry outer tropics show relatively slower retreat. This can be possibly due to the occurrence of cold phases of El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) together. The observed anomalies in the meteorological variables slightly follow PDO patterns and the variations in annual snowlines follows El Niño events, particularly when in phase with warm PDO. However, a strong correlation between snowline variations and ENSO (and PDO) is not established. Mountain glaciers in Ecuador show less retreat in response to the warming trend compared with observations done by other researchers in Colombia and Venezuela, probably due to very high altitude of the Ecuadorean glaciers. In a nutshell, smaller glaciers at lower altitudes in the inner tropics and the southern wet outer tropics are disappearing faster than other glaciers in the tropical Andes. Another observation made in this study is the directional property of glacier retreat, which was not covered in any other recent studies. Those glaciers on the eastern cordilleras of Peru and Bolivia, which feed many rivers on the eastern sides of the eastern cordilleras, are retreating faster than those glaciers situated on the western sides.
|
23 |
Variable Recovery of the Massive Coral, Porites Lobata, in Response to El Nino-Southern Oscillation Events at Devil's Crown, Galapagos, EcuadorPaul, Nicole Christine 21 December 2012 (has links)
Porites lobata is an important reef building coral in the tropical eastern Pacific and the dominant Porites species in the Galápagos archipelago. Following the 1982-83 El Niño-Southern Oscillation the Galápagos Islands experienced 97-99% coral mortality, leaving many areas throughout the archipelago denuded of corals. Because very few long term assessments have been conducted on the growth and resilience of P. lobata to natural disturbances in the Galápagos Islands (Glynn et al., 2001; Glynn et al., 2009), benthic surveys were performed on a uniquely dense aggregation of P. lobata colonies at Devil’s Crown, Floreana Island between 1993 and 2011. Annual changes in live tissue area were calculated for the majority of the population (n=17) using Coral Point Count with Excel extensions (CPCe 3.6) software to determine growth and recovery trends for this aggregation. Total live tissue area (n=10) increased from 1993 to 2011, however due to high interannual variability this increase was not significant. Within this overall pattern, a general trend of decline was observed in live tissue cover from 1993 to 2000, with increases in tissue area observed from 2000 to 2011. Severe bleaching (85-100%) was observed during the 1998 survey, followed by 42% tissue loss (n=10), coinciding with sea water warming associated with the very strong 1997-1998 El Niño-Southern Oscillation event. Subsequent regrowth of coral tissue was observed during the 2001 survey with continued recovery through 2009. Multiple comparison testing revealed a significant difference between the impacted state (1999) and the recovered state (2009), (p = 0.002, Dunn’s method, n=17), suggesting this aggregation required a period of ten years to recover from this disturbance. During this recovery period the moderately strong 2007-2008 La Niña, with accompanying stressful low temperatures, occurred but did not interrupt tissue regrowth. Warmer than average sea surface temperatures occurred during the warm months from 2008 to 2011, during which time a cool period occurred from 2010 to 2011. While the magnitude and duration of temperature anomalies during warming were not as great as those observed during the 1997-98 ENSO, low temperatures observed during the cool period were similar to those experienced throughout the 2007-08 La Niña. During this time total live tissue cover was reduced by 19% (n=10); however it is unknown whether this was due to warming or the following cool period. Based on results from the 1997-98 El Niño and 2007-08 La Niña, this reduction in live tissue was most likely caused by elevated sea surface temperatures. Data on the growth and resilience of P. lobata populations at Devil’s Crown will be used for conservation and management of this important resource.
|
24 |
Le sous-courant équatorial et les échanges de masse et de chaleur associés dans le Pacifique tropical : variabilité, liens avec les événements El Niño-La NiñaIZUMO, Takeshi 05 December 2003 (has links) (PDF)
Le sous-courant équatorial (EUC), en alimentant l'upwelling équatorial, peut avoir une forte influence sur la température de surface (SST) du Pacifique équatorial Est et donc sur la variabilité associée à El Niño. L'EUC et les cellules de circulation méridienne (shallow subtropical/tropical overturning cells, STCs/TCs) l'alimentant sont étudiés en combinant données in situ et modélisation. Les trajectoires de masses d'eau sont calculées dans des simulations réalistes (le modèle OPA forcé par les vents des réanalyses NCEP sur 1948-1999 ou des satellites ERS sur 1992-1999). Leur analyse met en évidence des cheminements des masses d'eaux propres aux évènements El Niño-La Niña de 1997-1998, avec des recharges et décharges de la bande équatoriale complexes et asymétriques. Cette analyse montre aussi l'apport d'eaux froides par les STCs et l'EUC lors de la brusque transition vers La Niña en mai 1998. Les données de courant et de température des mouillages TAO/TRITON le long de l'équateur à 170°W, 140°W et 110°W sont méthodiquement bouchées sur 1980-2002. On montre que des séries continues du débit, de la température, de la profondeur et de l'énergie cinétique de l'EUC sur toute son extension méridienne peuvent alors être construites. Leur analyse révèle que la forte variabilité interannuelle du débit de l'EUC est une réponse linéaire et quasi-stationnaire à la tension de vent zonale équatoriale intégrée zonalement dans le Pacifique Ouest et central. La température de l'EUC, indispensable pour l'estimation du transport de chaleur, varie elle linéairement avec la différence des profondeurs de la thermocline et de l'EUC dans le Pacifique central. Le modèle numérique, validé entre autre à l'aide des séries de l'EUC, est utilisé pour étudier sur 1951-1999 la circulation équatoriale associée à l'EUC: la convergence dans la pycnocline, l'upwelling équatorial et la divergence en surface à 5°N et 5°S. Leurs variabilités en débit sont quasi-égales à celle de l'EUC, qui est donc un bon indicateur de la force des STCs. Ces variabilités sont principalement causées par la tension de vent zonale intégrée zonalement sur tout le bassin, en accord avec des théories linéaires. Des déphasages avec la SST équatoriale, notamment l'avance de 5 mois de l'upwelling et de la divergence sur la SST, révèlent des relations de cause à effet très intéressantes, confirmées par les bilans de chaleur. La différence de température entre la divergence et la convergence a des variations interannuelles et à plus long-terme égales à celles de la SST équatoriale. Les conséquences sur les bilans et échanges de masse et de chaleur dans la bande équatoriale sont ensuite quantifiées. La variabilité du transport de chaleur méridien associé à la convergence/divergence est due aussi bien aux variations de débit que de température de la convergence et de la divergence. Ainsi, pendant un événement El Niño, la baisse des débits aura tendance à réchauffer la bande équatoriale (recharge), alors que l'augmentation de la différence entre les températures de la divergence et de la convergence aura l'effet contraire (décharge). Pour le Pacifique Est, les variations interannuelles du débit dominent celles de la température de l'EUC pour le transport de chaleur de l'EUC. Les liens avec les théories d'El Niño et sa variabilité décennale sont discutés.
|
25 |
Impact Of Large-Scale Coupled Atmospheric-Oceanic Circulation On Hydrologic Variability And Uncertainty Through Hydroclimatic TeleconnectionMaity, Rajib 01 January 2007 (has links)
In the recent scenario of climate change, the natural variability and uncertainty associated with the hydrologic variables is of great concern to the community. This thesis opens up a new area of multi-disciplinary research. It is a promising field of research in hydrology and water resources that uses the information from the field of atmospheric science. A new way to identify and capture the variability and uncertainty associated with the hydrologic variables is established through this thesis. Assessment of hydroclimatic teleconnection for Indian subcontinent and its use in basin-scale hydrologic time series analysis and forecasting is the broad aim of this PhD thesis.
The initial part of the thesis is devoted to investigate and establish the dependence of Indian summer monsoon rainfall (ISMR) on large-scale Oceanic-atmospheric circulation phenomena from tropical Pacific Ocean and Indian Ocean regions. El Niño-Southern Oscillation (ENSO) is the well established coupled Ocean-atmosphere mode of tropical Pacific Ocean whereas Indian Ocean Dipole (IOD) mode is the recently identified coupled Ocean-atmosphere mode of tropical Indian Ocean. Equatorial Indian Ocean Oscillation (EQUINOO) is known as the atmospheric component of IOD mode. The potential of ENSO and EQUINOO for predicting ISMR is investigated by Bayesian dynamic linear model (BDLM). A major advantage of this method is that, it is able to capture the dynamic nature of the cause-effect relationship between large-scale circulation information and hydrologic variables, which is quite expected in the climate change scenario. Another new method, proposed to capture the dependence between the teleconnected hydroclimatic variables is based on the theory of copula, which itself is quite new to the field of hydrology. The dependence of ISMR on ENSO and EQUINOO is captured and investigated for its potential use to predict the monthly variation of ISMR using the proposed method.
The association of monthly variation of ISMR with the combined information of ENSO and EQUINOO, denoted by monthly composite index (MCI), is also investigated and established. The spatial variability of such association is also investigated. It is observed that MCI is significantly associated with monthly rainfall variation all over India, except over North-East (NE) India, where it is poor.
Having established the hydroclimatic teleconnection at a comparatively larger scale, the hydroclimatic teleconnection for basin-scale hydrologic variables is then investigated and established. The association of large-scale atmospheric circulation with inflow during monsoon season into Hirakud reservoir, located in the state of Orissa in India, has been investigated. The strong predictive potential of the composite index of ENSO and EQUINOO is established for extreme inflow conditions. So the methodology of inflow prediction using the information of hydroclimatic teleconnection would be very suitable even for ungauged or poorly gauged watersheds as this approach does not use any information about the rainfall in the catchment.
Recognizing the basin-scale hydroclimatic association with both ENSO and EQUINOO at seasonal scale, the information of hydroclimatic teleconnection is used for streamflow forecasting for the Mahanadi River basin in the state of Orissa, India, both at seasonal and monthly scale. It is established that the basin-scale streamflow is influenced by the large-scale atmospheric circulation phenomena. Information of streamflow from previous month(s) alone, as used in most of the traditional modeling approaches, is shown to be inadequate. It is successfully established that incorporation of large-scale atmospheric circulation information significantly improves the performance of prediction at monthly scale. Again, the prevailing conditions/characteristics of watershed are also important. Thus, consideration of both the information of previous streamflow and large-scale atmospheric circulations are important for basin-scale streamflow prediction at monthly time-scale.
Adopting the developed approach of using the information of hydroclimatic teleconnection, hydrologic variables can be predicted with better accuracy which will be a very useful input for better management of water resources.
|
Page generated in 0.1264 seconds