• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Determination of fracture mechanics behavior of polyethylene sheets

Jin, Min January 2017 (has links)
Polyethylene is a widely-used material in package industries. The fracture behavior of this material has not been studied in the plastic region in many years. In this thesis work, the J-Integral which is one material property used to represent the plastic material strength is calculated through the numerical analysis. To build a correct numerical model, the material behavior is summarized from previous uniaxial tensile test. The result from the fracture experiment for variable initial crack length is used to validate the reliability of the numerical model. The numerical analysis is done by the software ABAQUS which has the function to get the value of J-Integral directly. The final result contains the comparison between experiments and numerical analysis and the value of J-Integral at the crack initiation.
2

Caracterização das propriedades mecânicas e metalúrgicas do aço API 5L X 80 e determinação experimental de curvas J-R para avaliação da tenacidade a fratura. / Experimental investigation of ductile crack growth in an API 5L X80 pipeline steel using J-R curves.

Silva, Maurício de Carvalho 29 October 2004 (has links)
Caracterizar propriedades de resistência à propagação de trinca em materiais dúcteis é um elemento central em métodos de avaliação de integridade estrutural de dutos destinados ao transporte de gás, petróleo e seus derivados que utilizam os aços ARBL. Sendo assim, o objetivo deste trabalho foi estudar as propriedades de fratura dúctil do aço API 5L X80, através da obtenção da curva de resistência à propagação estável de defeitos (curvas J-R) do material. O ensaio de tenacidade à fratura para obtenção da curva J-R foi conduzido utilizando a técnica do corpo-de-prova único (single specimen) empregando o método da flexibilidade no descarregamento (unloading compliance), segundo a norma de ensaios ASTM E1820-96. Os corpos-de-prova compactos C(T) apresentaram espessura B=15mm, largura W=2B e uma relação aproximada entre o tamanho de trinca (a) e a largura, a/W=0,6. O ensaio foi conduzido numa máquina universal de ensaios (MTS) servo-controlada e capacidade máxima de 250kN. Adicionalmente, foram conduzidos ensaios convencionais de tração (limite de escoamento – 550MPa, limite de resistência – 676MPa e alongamento total em 50mm – 27%), ensaios de impacto Charpy (energia absorvida de 220J à 0ºC – sentido longitudinal) e análises metalográficas (microestrutura refinada composta por ferrita, colônias de perlita e presença do constituinte MA). Tais caracterizações permitirão uma maior precisão na comparação da curva J-R do aço API 5L X80 em estudo com estudos futuros de tenacidade à fratura. / Assessments of crack growth resistance in ductile materials play a key role in structural integrity procedures for high strength, low alloy (HSLA) pipeline steels commonly employed in gas and petroleum trasmission systems. This work presents an investigation of the ductile tearing properties for an API 5L X80 pipeline steel using experimentally measured crack growth resistance curves (J-R curves) for the material. Testing of the X80 pipeline steel employed compact tension (C(T)) fracture specimens to determine the J-R curves based upon the unloading compliance method using a single specimen technique in accordance with the ASTM E1820 standard procedure. The C(T) specimens have thickness B=15mm, width W=2B and a ratio between crack size (a) and width, a/W=0,6. The experimental tests utilized a 250 kN MTS universal machine. Conventional tensile tests were also performed to determine the tensile properties for the tested material: yield strength of 550MPa, tensile strength of 676MPa and elongation of 27% (gage length of 50 mm). The Charpy V-notch impact tests also provided and absorbed energy of 220J at 0ºC. The metallographic analysis showed colonies of perlite and MA constituent islands in a ferrite matrix. This experimental characterization provides additional toughness and mechanical data against which the general behavior of X80 class pipeline steel can be compared.
3

Numerical simulation of the crack propagation in a pipeline subjected to third-party damage

Jackson, Marshall 11 January 2016 (has links)
With over 830,000 km of operating pipeline in Canada alone, their safe and continued functioning underpins much of daily life. A key type of risk associated with pipelines is third-party damage, damage caused by actions not associated with the pipelines normal operation. The question of whether the pressurized structure like pipeline or pressure vessel would undergo “unzipping” due to the third-party impact is crucial for the safety of pipelines or pressure vessels in service needs to be answered. Thus, we endeavour to develop a methodology for assessment of design solutions effectiveness to prevent a pipeline or pressure vessel failure in an abrupt explosion-like fashion due to third-party damage. Model of crack propagation determining whether the “unzipping” rupture will occur is viewed as a key element in the safety-driven design procedure providing significant effect on the safety of operation. The crack propagation modeling is achieved through the use of nonlinear fracture mechanics technique. The method of singular integral equations is used to calculate the critical stress required for the catastrophic failure of pipeline or pressure vessel damaged due to third-party interference. The model was implemented as a FORTRAN program. Testing of the developed numerical tool was performed using experimental data available in the literature, with the results showing promising agreement. / February 2016
4

Caracterização das propriedades mecânicas e metalúrgicas do aço API 5L X 80 e determinação experimental de curvas J-R para avaliação da tenacidade a fratura. / Experimental investigation of ductile crack growth in an API 5L X80 pipeline steel using J-R curves.

Maurício de Carvalho Silva 29 October 2004 (has links)
Caracterizar propriedades de resistência à propagação de trinca em materiais dúcteis é um elemento central em métodos de avaliação de integridade estrutural de dutos destinados ao transporte de gás, petróleo e seus derivados que utilizam os aços ARBL. Sendo assim, o objetivo deste trabalho foi estudar as propriedades de fratura dúctil do aço API 5L X80, através da obtenção da curva de resistência à propagação estável de defeitos (curvas J-R) do material. O ensaio de tenacidade à fratura para obtenção da curva J-R foi conduzido utilizando a técnica do corpo-de-prova único (single specimen) empregando o método da flexibilidade no descarregamento (unloading compliance), segundo a norma de ensaios ASTM E1820-96. Os corpos-de-prova compactos C(T) apresentaram espessura B=15mm, largura W=2B e uma relação aproximada entre o tamanho de trinca (a) e a largura, a/W=0,6. O ensaio foi conduzido numa máquina universal de ensaios (MTS) servo-controlada e capacidade máxima de 250kN. Adicionalmente, foram conduzidos ensaios convencionais de tração (limite de escoamento – 550MPa, limite de resistência – 676MPa e alongamento total em 50mm – 27%), ensaios de impacto Charpy (energia absorvida de 220J à 0ºC – sentido longitudinal) e análises metalográficas (microestrutura refinada composta por ferrita, colônias de perlita e presença do constituinte MA). Tais caracterizações permitirão uma maior precisão na comparação da curva J-R do aço API 5L X80 em estudo com estudos futuros de tenacidade à fratura. / Assessments of crack growth resistance in ductile materials play a key role in structural integrity procedures for high strength, low alloy (HSLA) pipeline steels commonly employed in gas and petroleum trasmission systems. This work presents an investigation of the ductile tearing properties for an API 5L X80 pipeline steel using experimentally measured crack growth resistance curves (J-R curves) for the material. Testing of the X80 pipeline steel employed compact tension (C(T)) fracture specimens to determine the J-R curves based upon the unloading compliance method using a single specimen technique in accordance with the ASTM E1820 standard procedure. The C(T) specimens have thickness B=15mm, width W=2B and a ratio between crack size (a) and width, a/W=0,6. The experimental tests utilized a 250 kN MTS universal machine. Conventional tensile tests were also performed to determine the tensile properties for the tested material: yield strength of 550MPa, tensile strength of 676MPa and elongation of 27% (gage length of 50 mm). The Charpy V-notch impact tests also provided and absorbed energy of 220J at 0ºC. The metallographic analysis showed colonies of perlite and MA constituent islands in a ferrite matrix. This experimental characterization provides additional toughness and mechanical data against which the general behavior of X80 class pipeline steel can be compared.
5

Popis napjatosti a deformace na čele trhlin zatížených ve smykových zátěžných módech / Description of Stress and Strain States at the Front of Cracks Loaded by Shear Modes

Žák, Stanislav January 2014 (has links)
The main goal of this work is the comparison of the size of the plastic zone at the crack tip for two analysis methods: an analytical linear method and an elastic-plastic analysis employing the Finite Element method (ANSYS software). All calculations were made for a crack loaded under pure shear modes. These types of loading are not sufficiently described in the literature. The first part of this work introduces the problem with the crack tip plastic zone using both linear and nonlinear fracture parameters. The second part is dedicated to the construction of the Finite Element model in the ANSYS software. The geometry of the samples and the loading levels were chosen to match an existing experimental test of the impact of shear modes on the crack behavior. In the third part of this thesis, the plastic zone radii for pure shear modes II and III are estimated using several methods and the results are compared. In the last part of this work, the same procedure as in the previous part is applied on a mixed-mode II+III loading. A result of this thesis is the assessment of the application limits of the linear analysis method used to estimate the size of the plastic zone at the crack tip for a specific geometry and material model.
6

Fatigue Crack Growth Mechanisms in Al-Si-Mg Alloys

Lados, Diana Aida 04 February 2004 (has links)
Due to the increasing use of cyclically loaded cast aluminum components in automotive and aerospace applications, fatigue and fatigue crack growth characteristics of aluminum castings are of great interest. Despite the extensive research efforts dedicated to this topic, a fundamental, mechanistic understanding of these alloys' behavior when subjected to dynamic loading is still lacking. This fundamental research investigated the mechanisms active at the microstructure level during dynamic loading and failure of conventionally cast and SSM Al-Si-Mg alloys. Five model alloys were cast to isolate the individual contribution of constituent phases on fatigue resistance. The major constituent phases, alpha-Al dendrites, Al/Si eutectic phase, and Mg-Si strengthening precipitates were mechanistically investigated to relate microstructure to near-threshold crack growth (Delta Kth) and crack propagation regimes (Regions II and III) for alloys of different Si composition/morphology, grain size, secondary dendrite arm spacing, heat treatment. A procedure to evaluate the actual fracture toughness from fatigue crack growth data was successfully developed based on a complex Elastic-Plastic-Fracture-Mechanics (EPFM/J-integral) approach. Residual stress-microstructure interactions, commonly overlooked by researches in the field, were also comprehensively defined and accounted for both experimentally and mathematically, and future revisions of ASTM E647 are expected.

Page generated in 0.1323 seconds