Spelling suggestions: "subject:"elastische celle"" "subject:"elastische telle""
1 |
Beitrag zur dreidimensionalen numerischen Berechnung der Wellenausbreitung und -abschirmung im elastischen HalbraumTung, Shih-Heng. January 2002 (has links) (PDF)
Aachen, Techn. Hochsch., Diss., 2002. / Computerdatei im Fernzugriff.
|
2 |
Beitrag zur dreidimensionalen numerischen Berechnung der Wellenausbreitung und -abschirmung im elastischen HalbraumTung, Shih-Heng. January 2002 (has links) (PDF)
Aachen, Techn. Hochsch., Diss., 2002. / Computerdatei im Fernzugriff.
|
3 |
Linear-elastische Wellen in vordeformierten MedienHorz, Markus. January 2007 (has links)
Univ. Gesamthochsch., Diss., 1994--Kassel.
|
4 |
Beitrag zur dreidimensionalen numerischen Berechnung der Wellenausbreitung und -abschirmung im elastischen HalbraumTung, Shih-Heng. Unknown Date (has links) (PDF)
Techn. Hochsch., Diss., 2002--Aachen.
|
5 |
Semilinear elastic waves with different damping mechanismsChen, Wenhui 14 July 2020 (has links)
Elastic waves describe particles vibrating in materials holding the property of elasticity. Particularly, several kinds of resistance in elasticity lead to the models of elastic waves with different damping mechanisms. In the thesis, the influence from friction, structural damping, Kelvin-Voigt damping on the linear and semilinear elastic waves in two or three dimensions are studied.
Concerning the Cauchy problem for linear elastic waves, some qualitative properties of solutions including well-posedness, smoothing effect, propagation of singularities, energy estimates and diffusion phenomena, are derived by using WKB analysis associated with diagonalization procedures or the spectral theory.
By constructing suitable time-weighted Sobolev spaces and using Banach's fixed point theorem, global (in time) existence of small data solutions to the weakly coupled systems for semilinear elastic waves with different damping terms have been proved. The main tools to treat the nonlinear terms in Sobolev spaces are some fractional tools in Harmonic Analysis.
Finally, well-posedness and Lp-Lq estimates for elastic waves without any damping terms in three dimensions are analyzed by employing Riesz transform theory and stationary phase methods.
|
Page generated in 0.0821 seconds