Spelling suggestions: "subject:"alectric contacts"" "subject:"alectric eontacts""
21 |
ECR Studies Across Bare And Gold Coated Metal Contacts At Low TemperaturesJain, Rajiv 10 1900 (has links)
Electrical contact resistance (ECR) measurements are needed for judging the performance of electrical appliances. Understanding the behaviour of ECR at low temperature gives a unique opportunity for understanding the contact mechanism itself and controlling the contact resistance for its applications in various areas at these temperatures. In many high-end applications, sophisticated electronic devices are being operated below ambient temperature to improve their performance. The availability of cryogens, improvement in Thermo-Electrical (TE) based Peltier coolers, accelerated the development of these devices. In designing such systems, an accurate measurement of electrical contact resistance below room temperature is important.
A detailed experimental investigation has been conducted on electrical contact resistance across bare and coated metal contacts at low temperatures. As a part of the experimental investigation, a test facility capable of varying the contact force, surrounding pressure and temperature, is developed. The design, construction, testing and use of this facility are described. Electrical contact resistance at different contact pressures across copper, OFHC copper and brass with and without gold coatings is measured using 4-wire technique with high accuracy. The test specimen preparation, instrumentation and data acquisition are explained in detail. The setup is standardized by comparing the experimental results obtained across copper-copper contacts in vacuum with the theoretical model. The electrical contact resistance is measured as a function of contact force at different temperatures. The effect of loading and unloading, and the existence of hysteresis are experimentally studied. The electrical properties of conductors improve at low temperature but this is not true for contact resistance. At low temperature the contact resistance increases and it depends on applied contact force, hardness and roughness of the contacting surfaces. Gold-coated contacts exhibited an increase in contact resistance at low temperatures.
|
22 |
Tribological investigation of electrical contactsBansal, Dinesh Gur Parshad 19 October 2009 (has links)
The temperature rise at the interface of two sliding bodies has significant bearing on the friction and wear characteristics of the bodies. The friction heat generated at the interface can be viewed as "loss of exergy" of the system, which also leads to accelerated wear in the form of oxidation, corrosion, and scuffing. This has a direct impact on the performance of the components or the machinery. If the sliding interface is also conducting electric current then the physics at the interface becomes complicated. The presence of electrical current leads to Joule heat generation at the interface along with other effects like electromotive, electroplasticity, stress relaxation and creep.
The interface of an electrical contact, either stationary or dynamic, is a complex environment as several different physical phenomena can occur simultaneously at different scales of observations. The main motivation for this work stems from the need to provide means for accurate determination or prediction of the critical contact parameters viz., temperature and contact resistance. Understanding the behavior of electrical contacts both static and dynamic under various operating conditions can provide new insights into the behavior of the interface. This dissertation covers three major topics: (1) temperature rise at the interface of sliding bodies, (2) study on static electrical contacts, and (3) study of factors influencing behavior of sliding electrical contacts under high current densities.
A model for determining the steady-state temperature distribution at the interface of two sliding bodies, with arbitrary initial temperatures and subjected to Coulomb and/or Joule heating, is developed. The model applies the technique of least squares regression to apply the condition of temperature continuity at every point in the domain. The results of the analysis are presented as a function of non-dimensional parameters of Peclet number, thermal conductivity ratio and ellipticity ratio. This model is first of its kind and enables the prediction of full temperature field. The analysis can be applied to a macro-scale contact, ignoring surface roughness, between two bodies and also to contact between two asperities. This analysis also yields an analytical expression for determining the heat partition between two bodies, if the Jaeger's hypothesis of equating average temperatures of both the bodies is being implemented.
In general for design purposes one is interested in either the maximum or the average temperature rise at the interface of two sliding bodies. Jaeger had presented simple equations, based on matching the average temperatures of both bodies, for square and band shaped contact geometries. Engineers since then have been using those equations for determining the interface temperature for circular and elliptical shaped contact geometries. Curve fit equations for determining the maximum and the average interface temperature for circular and elliptical contact with semi-ellipsoidal form of heat distribution are presented. These curve fit equations are also applicable for the case when both the bodies have dissimilar initial bulk temperatures. The equations are presented in terms of non-dimensional parameters and hence can easily be applied to any practical scenario.
The knowledge of electrical contact resistance between two bodies is important in ascertaining the Joule heat generation at the interface. The prediction of the contact resistance thus becomes important in predicting the performance of the contact or the machinery where the contact exists. The existing models for predicting ECR suffer from the drawback of ambiguity of the definition of input parameters as they depend on the sampling resolution of the measuring device. A multi-scale ECR model which decomposes the surface into its component frequencies, thus capturing the multi scale nature of rough surfaces, is developed to predict the electrical contact resistance. This model, based on the JS multi-scale contact model, overcomes the sensitivity to sampling resolution inherent in many asperity based models in the literature. The multi-scale ECR model also offers orders of magnitude of savings in computation time when compared to deterministic contact models. The model predictions are compared with the experimental observations over a wide range of loads and surface roughness of the specimens, and it is observed that the model predictions are within 50% of the experimental observations.
The effect of current cycling through static electrical contact is presented. It is observed that, the voltage drop across the contact initially increases with current until a certain critical voltage is increased. Beyond this critical point any increase in the current causes essentially no increase in steady-state contact voltage. This critical voltage is referred to as "saturation voltage." The saturation voltage for Al 6061 interface is found to be in the range of 160 - 190 mV and that for Cu 110 interface is in the range of 100 - 130 mV. The effect of load and surface roughness on voltage saturation is also demonstrated experimentally. An explanation based on the softening of the interface, due to temperature rise, is proposed rather than more widely referred hypothesis of recrystallization.
The phenomenon of voltage saturation is also demonstrated in sliding electrical contacts. The behavior of sliding interfaces of aluminum-copper (Al-Cu) and aluminum-aluminum (Al-Al) are analyzed under high current densities. Experimental results are presented that demonstrate the influence of load, speed, current and surface roughness on coefficient of friction, contact voltage, contact resistance, interface temperature and wear rate. The experimental results reveal that thermal softening of the interface is the primary reason for accelerated wear under the test conditions. The results from the experiments presents an opportunity to form constitutive equations which could be used to predict the performance of the contact based on input parameters.
The fusion of the findings of this dissertation provide methodologies along with experimental tools and findings to model, study and interpret the behavior of electrical contacts.
|
23 |
Studies of transport phenomena at ferromagnet/semiconductor interfacesSirisathitkul, C. January 2000 (has links)
No description available.
|
Page generated in 0.0645 seconds