• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Electric Field Alignment of Cellulose Based-Polymer Nanocomposites

Kalidindi, Sanjay Varma 2012 May 1900 (has links)
Cellulose whiskers (CWs) obtained from naturally occuring cellulose are nano-inclusions which show a lot of promise as mechanical reinforcements in polymers. Typically, a relatively high content is added to realize improvement in effective mechanical behavior. This enhancement in modulus is usually followed by a modest increase in strength but generally the ductility and toughness decrease. Our approach is to use small concentrations of CWs so as not to detrimentally affect processability, toughness and ductility. By aligning the small concentrations, we target the same kind of improvement in modulus and strength as reported in the literature, but at much smaller volume contents. In this work, we investigate the effect of AC electric field on the alignment of dispersed nanoscale CW in a polymer. Polyvinyl acetate (PVAc) is used as the model polymer because of the good interaction between CWs and PVAc. A low concentration of 0.4wt% was used for the study. Two dispersion methods, namely basic and modified, were developed. The basic method led to micron scale dispersion. Using the modified method, CWs were individually dispersed in PVAc with average lengths and diameters of 260 nm and 8 nm respectively yielding an aspect ratio of approximately 30. The behavior of CWs (alignment and chain formation) under an applied electric field was found to be a function of applied electric field magnitude, frequency and duration. Following alignment, the CW/PVAc nanocomposites are thermally dried in the presence of electric field to maintain the aligned microstructure. Improvements in dielectric constant and mechanical properties were observed for the aligned cases as compared to random case and pure PVAc. The optimal electric field magnitude, frequency and duration for the alignment and chain formation were found to be 200Vpp/mm, 50 KHz for duration of 20 minutes for the microcomposite and 250Vpp/mm, 10KHz for a duration of 1hr for the nanocomposite. At 0.4wt% concentration, 21% increase in dielectric constant for the optimal nanocomposite case. Above Tg, a 680% improvement in elastic modulus at 0.4wt% concentration for the optimal nanocomposite case. The reason for the significant reinforcement is attributed to alignment (rotation and chain formation) and chain-chain interaction (3D network formation and hydrogen bonding).
2

Composite Proton Exchange Membrane Based on Sulfonated Organic Nanoparticles

Pitia, Emmanuel Sokiri 20 July 2012 (has links)
No description available.
3

Field Assisted Roll-to-Roll Manufacturing of Novel Multifunctional Piezoelectric Composites

Armen Yildirim (9148748) 10 September 2022 (has links)
<p>The recent advances in flexible piezoelectric technologies have sparked a great interest in developing multifunctional next-generation transducers and actuators that are increasingly becoming high demand for a range of challenging applications, including self-powered structural and personal health monitoring systems to flexible loudspeaker devices. </p><p>In this research, novel <i>quasi </i>1–3 piezoelectric nanocomposites are introduced with record-high piezoelectric voltage coefficients (g<sub>33</sub>), reaching up to 0.709 Vm N<sup>−1</sup> (approximately 20 percent greater than the recently reported highest g<sub>33</sub> value in the literature). These materials are produced via dielectrophoretic process where both piezoelectric lead zirconate titanate (PZT) nanoparticles and graphene nanoplatelets (GNPs) are simultaneously aligned in a silicone-based polymer matrix (polydimethylsiloxane—PDMS) at a range of concentrations up to 13 vol%, leading to densely structured cone-shaped "nanocolumn forests" in the thickness direction. It is shown that the electric field induced alignment of particles not only improves the overall piezoelectric properties of the composite at relatively low filler concentrations, but also increases the transparency of the system by enabling the light to travel with little scattering or absorption in the “Z” direction through the particle depleted zones created between micro- and nano-sized columns. The details of these unique column morphologies are investigated by various off-line and on-line characterization techniques such as microcomputed tomography—microCT and real-time light transmission measurements to better understand the effect of both material (i.e., concentration) and process-based parameters (e.g., electric field, frequency) on pearl-chain formation. </p><p>To show its versatility and high-performance, the applications comprising both direct (e.g., force sensing, energy harvesting, structural and personal health monitoring) and inverse (e.g., loudspeaker) piezoelectric effect are also demonstrated and extensively characterized. </p><p>Additionally, to demonstrate the scalability of the process, large-area samples are also produced via the continuous dielectrophoretic process (utilizing a novel 44 ft long custom designed multifunctional roll-to-roll (R2R) manufacturing line), resulting in the largest single piece piezoelectric films ever reported in the literature. </p>

Page generated in 0.0671 seconds