Spelling suggestions: "subject:"alectric modulus"" "subject:"alectric nodulus""
1 |
Electric-Field Effects and Interactions of Dye–Polymer SystemsHilker, Brent 20 October 2010 (has links)
Matrix Assisted Laser Desorption Ionization–Time of Flight (MALDI-TOF) mass spectroscopy is used in the characterization of synthetic polymers. MALDI allows for determination of: modal, most probable peak (M P), molecular number average (MN), molecular weight average (MW), polydispersity (PD), and polymer spread (PSP). We evaluate a new sample preparation method using Induction Based Fluidics (IBF) to kinetically launch and direct nanoliter volumes to a target without contact. IBF offers signal improvement via field enhanced crystallization. This is the first study to discuss filed enhanced crystallization in MALDI sample preparation. IBF can increase signal/noise (S/N) and signal intensity for polystyrene (PS), poly(methyl methacrylate) (PMMA), and poly(ethylene glycol) (PEG) across a mass range of 2,500 to 92,000 Da showing more accurate PSP. Increases in S/N range up to: 279% for PS, 140% for PMMA, and 660% for PEG. Signal intensities increased up to: 438% for PS, 115% for PMMA, and 166% for PEG. Cross-polarization microscopy indicates dramatic morphology differences between IBF and micropipette. Finally, we speculate as to why IBF nanoliter depositions afford higher S/N values in experiments conducted in different instrumental configurations even without optimization.
Next we sought to investigate whether nanoliter volumes of concentrated polar liquids and organic monomers launched to targets using IBF can be verified through the real time charge measurements. We show that using a nanoliter IBF dispensing device and nanocoulomb meter, charge measurements made on nanoliter drops in real time are correlated with the droplets surface area following Gauss’s Law. We infer the "induction only" formation of the double layer showing the ability to determine nanoliter volumes, nearly instantaneously, in real time. Implications are presented from these IBF measurement observations on improving/monitoring MALDI quantitation and its quality control.
Polymer-dye interactions were further investigated using PMMA composites made from a polar metalloporphyrin [5-(4',4',5',5'-tetramethyl[1',3',2']dioxaborolan-2'-yl)-10,20-diphenylporphyrinato]zinc(II) (Zn(II)Bpin-DPP) in select weight %s (wt%s). Fluorescence spectroscopy has revealed that the porphyrin was well dispersed within the composite. Differential Scanning Calorimetry (DSC) showed that porphyrin acted as an antiplasticizer raising the glass transition (Tg) from 105 °C to 123 °C. Dielectric Analysis (DEA) was performed in the frequency range of 0.3 Hz to 100 kHz between -150 to 270 ⁰C. Permittivity (ε’), loss factor (ε’’) and dielectric response of beta (β), alpha beta (αβ), and conductivity relaxations were studied. Previous DEA data was limited to 190 ⁰C. This study brings analysis to 270 ⁰C which is start point for the first part of PMMA degradation. Thus forwarding DEA can be used to evaluate PMMA degradation. The electric modulus formalism is used to reveal the β and conductivity relaxations. The apparent activation energies (Ea) for the molecular relaxations are presented. AC (ζAC) and DC (ζDC) conductivity are also evaluated. Tan delta (δ), dissipation factor, evaluated between 1 Hz to 100 kHz was shown to increase with porphyrin loading although locally affected by free volume restriction. Havriliak-Negami (H-N) equation was fit using the complex electric modulus (M*) modified form and was performed on the conductivity region 160 to 190 ⁰C and degradation region 190 to 270 °C. Relaxations above the Tg were proven to be conductivity relaxations using four proofs. This is the first study to investigate PMMA degradation DEA with the complex electric modulus, M*, revealing a unique occurrence of increasing central relaxation times (s-1) and reducing electric loss modulus (M") frequency maxima (Hz) after the degradation temperature of 220 ⁰C was reached supporting current literature of the first of a two part degradation process that proceeds via end chain scission.
|
2 |
Design, Synthesis, Processing, and Thermal Analysis of Nanocomposites with Tunable PropertiesKim, Mu Seong 01 January 2012 (has links)
Polymer composites containing nanosized fillers have generated explosive interest since the early 1980's. Many recent studies have been conducted incorporating nano-fillers into polymer matrices to design and synthesize materials with tunable mechanical, thermal, and optical properties. Conventional filled polymers, where the reinforcement is on the order of microns, have been replaced by composites with discrete nanosized fillers. Gradually, theories that predicted that composite properties are independent of particle size in the micron range were challenged by nanocomposites. Rather, nanocomposite properties are greatly influenced by the surface area of the. All of this is complicated by the fact that nanoparticles are inclined to aggregate or migrate to interfaces. Much effort has been devoted to optimize dispersion of nanofillers in the polymer matrices, as polymer-nanoparticle interactions and adhesion greatly influence performance of the material. A well- dispersed composite system with various noncovalent interactions such as those that arise from hydrogen bonding, electrostatic attractions and π-π interactions between the filler and the matrix, can transfer stress and the interface will stop the development of cracks and impede stress concentrations. Overall, large reinforcement increases are noted at low nanoparticle loadings. Additionally, functional properties such as thermal, electrical conductivity and porosity can be tailored for specific applications. The design of high performance composites requires optimizing dispersion, nanoparticle-polymer noncovalent interactions and the chemistry of the materials. Therefore polymer composites with different types of nanofillers were investigated to prove various noncovalent interaction and to improve the mechanical, thermal and electrical properties in this study.
Poly (methyl methacrylate) (PMMA) with BaTiO3 and Bi2O3 composites were fabricated by two different methods; sonication of fillers in PMMA and in situ polymerization. Samples were irradiated in air via a JL Shepherd Mark I cesium-137 source. The dose rate was 985 rads/min and the total dose was 2.0 Mrad. The polymer sonication (PSON) method has a greater effect than in situ polymerization on sample uniformity. With the PSON method there was a slight improvement in rad hardness in the barium titanate composites. This is the case with and without MWNTs and coupling agents. The storage modulus and loss modulus were measured via Dynamic Mechanical Analyzer (DMA) under the tension film mode using a heating rate of 5 °C min-1 from -150 °C to 200 °C and a scanning frequency range of 1-100 Hz. Scanning electron microscopy (SEM) provided images of the polymer-nanocomposites.
An aliphatic isocyanate, polyether, polyol thermoplastic polyurethane, Tecoflex® SG-85A, was solution processed with the varying amounts of silica nanowire. A new grade polyurethane, Tecoflex®, was synthesized from the aliphatic 4,4-methylene dicyclohexyl diisocyanate (H12MDI) with polytetramethylene ether glycol. Despite Tecoflex®'s longevity and wide use, this polymer's dielectric behavior has not been widely studied. Therefore, the dielectric response of neat PU, Tecoflex®, and PU composites with silica nanowire from -150 to 150 °C is presented. The mechanism of nanowire growing with diameters ranging from 50 to 500 nm has been established to follow the vapour liquid solid (VLS) model via the PtSi phase acting as the catalyst. Our previous thermal stability study of PU nanowire composites have yielded increased heat stability to 330 °C. In comparison, neat PU only maintains thermal stability in temperatures that range to 250 °C. The onset of decomposition temperature was measured by thermogravimetric analysis (TGA). Scanning electron microscopy (SEM) provided images of the polymer-nanocomposites.
A series of PMMA-dodecyloxy NB and PHEMA-dodecyloxy NB composites were synthesized in situ and characterized. The dodecyl groups significantly alter the solubility of the nanoballs, imparting hydrophobicity to the surface of the nanoball. A comparison study was made between the PMMA-NB and PHEMA-NB nanocomposites. Structure property relations are discussed in terms of interactions between the polymer matrices and nanoball surfaces and interiors. These OC12 NB and the hydroxyl NB polymer composites are the first studies to date that probe relaxations and conductivity in discrete polyhedral metal-organic polymer composites.
A novel ultra-flexible polycarbonate-polyurethane (PCPU) was synthesized with methylene bis(4-cyclohexylisocyanate), 1,4 butanediol as a chain extender and a polycarbonate polyol containing 1,6-hexanediol and 3-methyl-1,5-pentanediol. Through the techniques of water coagulation, the synthesis of self-healing PCPU with various concentrations of SWNT (Single-Walled Nanotubes) is possible. The resulting features of this synthesized rubber-like substance are to be evaluated to determine glass transition temperature. This novel type of polyurethane material targets growing markets for biocompatible polymers. Also, a secondary goal of this project is to obtain information useful to determining whether PCPU-carbon nanotube composites would be good candidates for use as a gel electrolyte in polymer batteries.
All nanocomposites were characterized by differential scanning calorimetry (DSC) to determine glass transition temperatures. The dielectric permittivity (ε’) and loss factor (ε”) were also measured via Dielectric Analysis (DEA) in the frequency range 1Hz to 100 kHz and between the proper temperatures in all polymer composite. The electric modulus formalism was used to reveal structural relaxations including conductivity relaxation. The activation energies for the relaxations are presented.
|
Page generated in 0.0551 seconds