• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

6/14 Switched Reluctance Machine Design for Household HVAC System Applications

Kasprzak, Michael January 2017 (has links)
With the unstable cost and supply of rare earth materials used in permanent magnet electric machines, many alternative machine types are being studied which are suitable for different applications. The focus of this thesis is the design of a novel 6/14 switched reluctance machine which can be fitted in a residential heating, ventilation, and air-conditioning (HVAC) application based on measured performance characteristics of an existing surface mount permanent-magnet synchronous (SMPS) machine. Residential electric motor applications are reviewed and in particular - furnace blower motor appliances. The fundamentals of switched reluctance machines are discussed, including the mechanism, operation, and control strategy. A SMPS motor which is commercially available for retrofitting into residential HVAC systems is analyzed to find its performance characteristics through disassembly, inspection, and dynamometer bench testing. The design of a novel 6/14 SRM optimization process is outlined to investigate the effect of changing the geometry values within the motor on the performance characteristics, while keeping within the size constraints of the original motor. A novel 6/14 SRM design is presented which is capable of achieving the target goals in the desired operating conditions. Further suitability testing is performed in terms of thermal analysis of the motor in the peak and continuous operating condition and mechanical stress analysis of the rotor under various rotational speeds. The full CAD assembly of the motor is designed including components from the original SMPS motor to allow for fitting in the same HVAC application. / Thesis / Master of Applied Science (MASc) / With the unstable cost and supply of rare earth materials used in permanent magnet electric motors, many alternative machine types are being studied which are suitable for different applications. The focus of this thesis is the design of a novel 6/14 switched reluctance machine which can be fitted in a residential heating, ventilation, and air-conditioning (HVAC) application based on measured performance characteristics of an existing surface mount permanent-magnet synchronous (SMPS) machine. Switched reluctance machines have a number of benefits over permanent magnet machines including that they do not have permanent magnets, are less sensitive to high heat scenarios, have lower manufacturing costs, are more robust, and are generally capable of higher operating speeds. Residential electric motor applications are reviewed and in particular - furnace blower motor appliances. The fundamentals of switched reluctance machines are discussed, including the mechanism, operation, and control strategy. A SMPS motor which is commercially available for retrofitting into residential furnace systems is analyzed to find its performance characteristics through disassembly, inspection, and dynamometer bench testing. The design of a novel 6/14 SRM optimization process is outlined to investigate the effect of changing the geometry values within the motor on the performance characteristics, while keeping within the size constraints of the original motor. A novel 6/14 SRM design is presented which is capable of achieving the target goals in the desired operating conditions. Further suitability testing is performed in terms of thermal analysis of the motor in the peak and continuous operating condition and mechanical stress analysis of the rotor under various rotational speeds. The full 3D CAD assembly model of the motor is designed including components from the original SMPS motor to allow for fitting in the same HVAC application.
2

An Integrated Design Approach of Rotor Assembly for Radial Flux Surface-Mounted Permanent Magnet Synchronous Motors

Manikandan, Akshay January 2023 (has links)
Enhancing the dependability and power density of a SPMSMs is crucial for its extensive utilization in the automotive and aerospace sectors. One major concern regarding these machines is the significant thermo-mechanical loads experienced by the overall rotating assembly due to high rotational speeds and a wide operational temperature range from $50^\circ C$ to $150^\circ C$. This poses a considerable challenge in maintaining structural integrity among the components. Redesigning components to reduce assembly complexity and weight necessitates careful consideration of boundary conditions and contact modeling to prevent catastrophic failures like magnet fly-by conditions. To reduce model complexity, a simplified approach involves integrating the hub and shaft; both machined from AISI 4340. Additionally, the application of a carbon fiber sleeve is investigated through 3-dimensional composite modeling to enhance structural integrity. The primary objective of this thesis is to scientifically justify the design and validation of an integrated rotor hub and shaft using efficient FEM and integration strategies, with the aim of maximizing the durability of a $150kW$ radial flux SPMSMs spinning at $20,000 rpm$. The integrated topology optimization is evaluated using a multiphysics platform alongside studies on motor assembly eigenfrequency. By employing the integrated approach and utilizing AISI 4340 for both the shaft and rotor hub, a weight reduction of $1.84kg$ is achieved, eliminating the need for standard components such as balancing end clamp plates, locknuts, and washers. Furthermore, introducing a carbon fiber sleeve enhances structural integrity, thereby reducing adhesive stress. The design and optimization of the rotating components ensure that the maximum von Mises stress is $50\%$ lower than the material's yield strength. Reduced masses lead to lower centrifugal forces, thereby diminishing radial stress and promoting component and assembly stiffness. / Thesis / Master of Applied Science (MASc) / This thesis aims to increase the reliability and power density of a surface-mounted permanent magnet synchronous machine (SPMSMs), a commonly used traction motor in the automotive and aerospace industries. One of these machines' main challenges is designing their components to withstand the high mechanical loads caused by their fast rotational speeds. The studies performed in this thesis use a computer modeling technique called Finite Element Modeling (FEM) to strategize and design an integrated rotor hub/shaft by maximizing the durability of a 150kW radial flux SPMSMs rotating at 20,000 rpm. Upon evaluating the integrated design using a variety of physics-based simulations, the design was found to save 1.84kg in weight, reducing centrifugal forces and improving the overall stiffness of the motor assembly. This research could lead to more efficient and durable electric SPMSMs for various applications.
3

On The Mechanical Design of Power Dense Axial Flux Permanent Magnet Synchronous Motors for Aircraft Propulsion Applications

Duperly, Federico January 2024 (has links)
Traffic congestion in large urban and metropolitan areas is a substantial problem plaguing these areas. Not only are commuters losing valuable time, but greenhouse gas emissions are substantially worse because of congestion. Considerable research and development into next generation electrified aircraft is ongoing to introduce air mobility as a viable new means of transporting people and goods across long commutes. This development extends into commercial aviation as a whole as a means of reducing the industry’s carbon footprint with new aircraft designs that employ electrified propulsion systems. Many electrified aircraft projects are currently underway, ranging from small commuter aircraft all the way to large twin-aisle aircraft, and part of the development scope for alot of these projects is creating highly robust and power dense electric machines that replace the current state-of-the-art. The axial flux permanent magnet synchronous machine is an exciting candidate for aircraft propulsion due to its exceptional torque density and compact axial nature. In this thesis, the mechanical design for three generations of axial flux permanent magnet synchronous machines is discussed. These machines serve as development phase prototypes for machines that are ultimately intended for propulsion applications in commercial aviation, particularly for eVTOL aircraft. The motivation for electrification in the commercial aviation industry is discussed, followed by an overview of the development landscape for electrified propulsion systems in commercial aviation, focusing primarily on electric machines that are currently state-of-the-art or are set to be in the near future, as well as what is required for future electric machines in terms of power output and power density. The axial flux architecture is then presented, including a high-level comparison to the radial-flux architecture, an overview of the various axial flux machine designs and topologies, and a discussion of the inherent mechanical design challenges associated with the axial flux architecture. The yokeless and segmented armature axial flux permanent magnet synchronous machine design was selected for the machines developed as part of the research for this thesis, and the discussion of the mechanical design of these machines is broken up into the two core sub assemblies: stator assembly and rotating assembly. High-level design methodologies are introduced for both sub-assemblies, which is further broken down into different approaches pertaining to each generation. The first and second generation designs are presented at a high level, followed by deep-dives into the complete mechanical design for the third generation stator, the bearing selection, arrangement, and analysis for the third generation rotating assembly, and adhesive characterization trials used to guide adhesive selection for rotor magnetics retention in the second and third generation machines. The current status of the machines and any outcomes from testing that has been conducted thus far, particularly with respect to performance, is presented at the end. / Thesis / Master of Applied Science (MASc)
4

Permanent magnet assisted synchronous reluctance motor, design and performance improvement

Niazi, Peyman 12 April 2006 (has links)
Recently, permanent magnet assisted (PMa)-synchronous reluctance motors (SynRM) have been considered as a possible alternative motor drive for high performance applications. In order to have an efficient motor drive, performing of three steps in design of the overall drive is not avoidable. These steps are design optimization of the motor, identification of the motor parameter and implementation of an advanced control system to ensure optimum operation. Therefore, this dissertation first deals with the design optimization of the Permanent Magnet Assisted Synchronous Reluctance Motor (PMa-SynRM). Various key points in the rotor design of a low cost PMa-SynRM are introduced and their effects are studied. Finite element approach has been utilized to show the effects of these parameters on the developed average electromagnetic torque and the total d-q inductances. As it can be inferred from the name of the motor, there are some permanent magnets mounted in the rotor core. One of the features considered in the design of this motor is the magnetization of the permanent magnets mounted in the rotor core using the stator windings to reduce the manufacturing cost. At the next step, identification of the motor parameters is discussed. Variation of motor parameters due to temperature and airgap flux has been reported in the literatures. Use of off-line models for estimating the motor parameters is known as a computationally intensive method, especially when the models include the effect of cross saturation. Therefore in practical applications, on-line parameter estimation is favored to achieve a high performance control system. In this dissertation, a simple practical method for parameter estimation of the PMa-SynRM is introduced. Last part of the dissertation presents one advanced control strategy which utilized the introduced parameter estimator. A practical Maximum Torque Per Ampere (MTPA) control scheme along with a simple parameter estimator for PMa-SynRM is introduced. This method is capable of maintaining the MTPA condition and stays robust against the variations of motor parameters. Effectiveness of the motor design procedure and the control strategy is validated by presenting simulation and experimental results of a 1.5 kW prototype PMa-SynRM, designed and manufactured through the introduced design method.

Page generated in 0.0632 seconds