• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Electrical power aspects of distributed propulsion systems in turbo-electric powered aircraft

Pagonis, Meletios January 2015 (has links)
The aerospace industry is currently looking at options for fulfilling the technological development targets set for the next aircraft generations. Conventional engines and aircraft architectures are now at a maturity level which makes the realisation of these targets extremely problematic. Radical solutions seem to be necessary and Electric Distributed Propulsion is the most promising concept for future aviation. Several studies showed that the viability of this novel concept depends on the implementation of a superconducting power network. The particularities of a superconducting power network are described in this study where novel components and new design conditions of these networks are highlighted. Simulink models to estimate the weight of fully superconducting machines have been developed in this research work producing a relatively conservative prediction model compared to the NASA figures which are the only reference available in the literature. A conceptual aircraft design architecture implementing a superconducting secondary electrical power system is also proposed. Depending on the size of the aircraft, and hence the electric load demand, the proposed superconducting architecture proved to be up to three times lighter than the current more electric configurations. The selection of such a configuration will also align with the general tendency towards a superconducting network for the proposed electric distributed propulsion concept. In addition, the hybrid nature of these configurations has also been explored and the potential enhanced role of energy storage mechanisms has been further investigated leading to almost weight neutral but far more flexible aircraft solutions. For the forecast timeframe battery technology seems the only viable choice in terms of energy storage options. The anticipated weight of the Lithium sulphur technology is the most promising for the proposed architectures and for the timeframe under investigation. The whole study is based on products and technologies which are expected to be available on the 2035 timeframe. However, future radical changes in energy storage technologies may be possible but the approach used in this study can be readily adapted to meet such changes.
2

Power Optimal Network-On-Chip Interconnect Design

Vikas, G 02 1900 (has links) (PDF)
A large part of today's multi-core chips is interconnect. Increasing communication complexity has made new strategies for interconnects essential such as Network on Chip. Power dissipation in interconnects has become a substantial part of the total power dissipation. Hence, techniques to reduce interconnect power have become a necessity. In this thesis, we present a design methodology that gives values of bus width for interconnect links, frequency of operation for routers, in Network on Chip scenario that satisfy required throughput and dissipate minimal switching power. We develop closed form analytical expressions for the power dissipation, with bus width and frequency as variables and then use Lagrange multiplier method to arrive at the optimal values. To validate our methodology, we implement the router design in 90 nm technology and measure power for various bus widths and frequency combinations. We find that the experimental results are in good agreement with the predicted theoretical results. Further, we present the scenario of an Application Specific System on Chip (ASSoC), where the throughput requirements are different on different links. We show that our analytical model holds in this case also. Then, we present modified version of the solution considered for Chip Multi Processor (CMP) case that can solve the ASSoC scenario also.
3

Energy And Channel-Aware Power And Discrete Rate Adaptation And Access In Energy Harvesting Wireless Networks

Khairnar, Parag S 05 1900 (has links) (PDF)
Energy harvesting (EH) nodes, which harvest energy from the environment in order to communicate over a wireless link, promise perpetual operation of wireless networks. The primary focus of the communication system design shifts from being as energy conservative as possible to judiciously handling the randomness in the energy harvesting process in order to enhance the system performance. This engenders a significant redesign of the physical and multiple access layers of communication. In this thesis, we address the problem of maximizing the throughput of a system that consists of rate-adaptive EH nodes that transmit data to a common sink node. We consider the practical case of discrete rate adaptation in which a node selects its transmission power from a set of finitely many rates and adjusts its transmit power to meet a bit error rate (BER) constraint. When there is only one EH node in the network, the problem involves determining the rate and power at which the node should transmit as a function of its channel gain and battery state. For the system with multiple EH nodes, which node should be selected also needs to be determined. We first prove that the energy neutrality constraint, which governs the operation of an EH node, is tighter than the average power constraint. We then propose a simple rate and power adaptation scheme for a system with a single EH node and prove that its throughput approaches the optimal throughput arbitrarily closely. We then arrive at the optimal selection and rate adaptation rules for a multi-EH node system that opportunistically selects at most one node to transmit at any time. The optimal scheme is shown to significantly outperform other ad hoc selection and transmission schemes. The effect of energy overheads, such as battery storage inefficiencies and the energy required for sensing and processing, on the transmission scheme and its overall throughput is also analytically characterized. Further, we show how the time and energy overheads incurred by the opportunistic selection process itself affect the adaptation and selection rules and the overall system throughput. Insights into the scaling behavior of the average system throughput in the asymptotic regime, in which the number of nodes tend to infinity, are also obtained. We also optimize the maximum time allotted for selection, so as to maximize the overall system throughput. For systems with EH nodes or non-EH nodes, which are subject to an average power constraint, the optimal rate and power adaptation depends on a power control parameter, which hitherto has been calculated numerically. We derive novel asymptotically tight bounds and approximations for the same, when the average rate of energy harvesting is large. These new expressions are analytically insightful, computationally useful, and are also quite accurate even in the non-asymptotic regime when average rate of energy harvesting is relatively small. In summary, this work develops several useful insights into the design of selection and transmission schemes for a wireless network with rate-adaptive EH nodes.

Page generated in 0.0435 seconds