Spelling suggestions: "subject:"alectric field sensor"" "subject:"delectric field sensor""
1 |
Design, modeling and fabrication of a copper electroplated MEMS, membrane based electric field sensorTahmasebian, Ehsan 09 January 2015 (has links)
A MEMS based electrostatic field sensor is presented which uses capacitive interrogation of an electrostatic force deflected microstructure. First the deflection of the sensor’s membrane which is caused by electrostatic force in the presence of electric field is calculated both by simulation and theoretical model and it has been shown that the results of the simulations have acceptable values compared to the theoretical ones. Simulation models have also been designed to improve the vibration of the membrane for measuring the ac electric fields. It has been shown that by adding perforations to the surface of the membrane, it is possible to reduce the air drag force effect on the membrane and still have similar electrostatic force on the membrane. Therefore, it is possible to reduce the damping due to air resistance in membrane movement when measuring ac fields. After successful modeling of the sensor structure, the fabrication process for the sensor has been designed. The electroplating process as the most important fabrication step has been studied in detail prior to starting the fabrication of sensor. The process parameters for electroplating process, such as current amplitudes, duty cycle and frequency have been optimized to get the lowest surface roughness to thickness ratio for the electroplated films. A lithography molding process was developed for the electroplating. Both dc and pulse plated films have been studied to show the role of pulse plating in improving the quality of the electroplated films. It was found during the release process that the electroplated copper interacted with sulfur during plasma etching of silicon. However, the result of the releasing process was very helpful to find the best recipe of releasing and they can be used in next projects.
|
2 |
Magnetic Field Sensing with Slab Coupled Optical Fiber SensorsShreeve, Bryson J. 28 June 2011 (has links) (PDF)
This thesis reports an in-fiber magnetic field sensor that is able to detect magnetic fields as low as 2 A/m at a spatial resolution of 1 mm. The small sensor consists of a magneto-optic slab waveguide, bismuth-doped rare earth iron garnet (Bi-RIG) that is coupled to an optical fiber. By coupling light from the fiber to the slab waveguide, it becomes an in-fiber magnetic field sensor. This is due to the Magneto-Optic Kerr effect; a change in refractive index is proportional to the applied magnetic field. When an AC field is applied, an AC component in the output power can be detected by a spectrum analyzer. The novelties of Magneto-Optic Slab Coupled Optical Sensor (MO-SCOS) devices include their small compact nature and a dielectric structure allowing low electromagnetic interference. Due to their compact size they are capable of placement within devices to measure interior electromagnetic fields immeasurable by other sensors that are either too large for internal placement or disruptive of the internal fields due to metallic structure. This work also reports progress on EO SCOS development. The EO sensor has found application in new environments including the electromagnetic rail gun, and a dual-axis sensor.
|
Page generated in 0.0542 seconds